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Abstract

In previous publications [J. Geom. Phys. 38 (2001) 81 and references therein] the partition
function for 2+ 1 gravity was constructed for the fixed genus Riemann surface. With the help
of this function the dynamical transition from pseudo-Anosov to periodic (Seifert-fibered) regime
was studied. In this paper the periodic regime is studied in some detail in order to recover major
results of Kontsevich [Commun. Math. Phys. 147 (1992) 1] inspired by earlier work of Witten
on topological two-dimensional quantum gravity. To achieve this goal some results from enumer-
ative combinatorics have been used. The logical developments are extensively illustrated using
geometrically convincing figures. This feature is helpful for development of some nontraditional
applications (mentioned through the entire text) of obtained results to fields other than theoretical
particle physics. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Motivation

It may not be exaggeration to say that dynamics of 2+ 1 gravity is just an interpretation
of Nielsen–Thurston theory of surface homeomorphisms in terms of concepts known in
physics[1–4]. Apparently, the reverse task of enriching mathematics with concepts known
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from physics had been accomplished by Witten[5]. His physical intuition had revolution-
ized combinatorial methods of algebraic geometry related to intersection theory on moduli
space of curves[6–8]. In his famous paper[9] Kontsevich had provided needed mathe-
matical justification to Witten’s work. Since in both papers the initial object of study is
two-dimensional quantum gravity it is only natural to expect that the results of Witten and
Kontsevich can be reobtained from more general 2+ 1 gravity model. The purpose of this
paper is to demonstrate that this is indeed possible.

It should be noted that the results of Witten and Kontsevich (W–K) rely heavily on the fact
(proven by Kontsevich[9]) that the partition function of two-dimensional gravity happens
to beτ function of the Korteweg–de Vries (KdV) hierarchy which is just a special case
of more general Kadomtsev–Petviashvili (KP) hierarchy of nonlinear exactly integrable
partial differential equations. Attempts to connect string theory with exactly integrable
systems had been made earlier. Good summary of earlier efforts can be found in[10].
Recently, KP equations had been discussed in relation to dynamics of 2+ 1 gravity [11].
The content of[11] apparently has no connections with results of W–K. This does not
exclude the possibility that such connection might exist and requires further study. In the
present work we establish such connection (reduction) by reobtaining W–K results from
formalism developed earlier for 2+ 1 gravity [1,2,34]. This formalism is based on some
properties of Riemann surfaces. From algebraic geometry it is known that every Riemann
surfaceS can be described in terms of the corresponding complex algebraic curveC [12]
so that one can use interchangeably algebro-geometric and complex analytic language to
discuss the same object, the Riemann surface. This, unfortunately, is not an easy task as
was noticed by Looijenga[7]. The existing difference in terminology is especially apparent
when one is interested in the issue of compactification of the moduli space of Riemann
surfaces (e.g. seeEq. (1.1)and related discussion)

Moduli spacesMg are connected with Teichmüller spacesTg of Riemann surfaces of
genusg ≥ 2 in such a way thatMg = Tg/Γ with Γ being the mapping class group
of S. BothMg andTg have been discussed extensively in our earlier published papers
on 2+ 1 gravity [1–4]. The concept of moduli had been initially proposed by Riemann
who stated that isomorphism classes of closed Riemann surfaces of genusg ≥ 2 are
parameterized by 3g− 3 complex parameters (or by 6g− 6 real parameters). The space of
allowed values of these parameters is effectively the moduli spaceMg. More accurately,
such moduli space is calledcoarse moduli space. It is complex analytic space of dimension
3g − 3 but not a complex manifold. Presence of singularities (to be discussed below)
prevents this manifold from becoming a complex manifold[6,13]. One way of describing
bothMg andTg is through introduction of marking ofS (accordingly ofC). Marking
of S can be made by introducing somen boundary components such that each of them is
conformally equivalent to a punctured disk[14]. Accordingly, for algebraic curves we select
n distinguished(smooth) points on the curve. Smooth means that the points are not located
at the possible singularities ofC. According to Deligne and Mumford[15] such singularities
are regular double points which, in the case of traditional visualization of Riemann surfaces
as closed surfaces withg holes, are associated with formation of nodes as depicted inFig. 1.

The compactificationM̄g,n of moduli space is achieved by inclusion intoMg,n domains
in parameter space associated with Riemann surfaces with nodes. In the language of al-
gebraic geometry complex curves associated with such surfaces are calledstable. Marked
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Fig. 1. Various types of degeneration of the Riemann surfaces.

curves possess only finitely many automorphisms. It is known[6] that no stable curve can
have more than 3g − 3 nodes. This fact may be easily understood if we recall that each
Riemann surface admits pants decomposition[2] so that 3g − 3 nodes can be associated
with degenerate geodesics whose lengths are squeezed to zero. For Riemann surfaceS
instead of (or in addition to) marked points one can think about families of closed curves
(lamination sets[4]) and their intersections. By properly defining intersection number(s)
one can measure the nontriviality of such sets[6]. In algebraic geometry such numbers are
associated with cohomology classes known also astautological classesψi inH 2(M̄g,n,Q).
These numbers should not be confused withgeometricalintersection numbers introduced
by Thurston[16,17]. Roughly speaking such numberi measures the number of intersec-
tions between a selected simple nontrivial closed curveα onS and measured foliationF :
i = i(F, α). This observation allows one to introduce equivalence relations between mea-
sured foliations. In particular, foliationsF1 andF2 areprojectivelyequivalent if there is
numberλ ∈ R+ such thati(F1, α) = λi(F2, α). Following Thurston[17] and others[18],
we define the space of projective laminationsPL(S) as space of equivalence classes of
measured foliations. Such defined space forms aboundaryof the Teichmüller spaceTg,n.
The compactification of the Teichmüller spaceT̄ (S) is defined now as

T̄ (S) = T (S) ∪ PL(S). (1.1)

The setT̄ (S) is closed ball of real dimension 6g − 6+ 2n whose boundary is identified
with PL(S). Since the moduli space is the quotient ofT (S) by the mapping class group
Γ , is clear that such defined compactification of the Teichmüller space leads accordingly
to the compactification of the moduli space. Such compactification is apparently different
from that of Deligne–Mumford. The difference has some physical meaning. Indeed, in the
traditional, algebro-geometric case, no dynamics is involved while in the Thurston’s case the
dynamics (that is “time evolution”) is associated with dynamically formed three-manifolds,
e.g. see Chapters 8 and 9 of Thurston’s lecture notes[16]. These dynamical features are
explained in physical terms and illustrated in our recently published paper on statistical
mechanics of 2+ 1 gravity[4].
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Since in two-dimensional quantum gravity there is no time evolution, naturally, there is
no dynamical observables and theory is essentially topological. Witten[5] had suggested
to study the topological averages of the type

〈τk1 · · · τkn〉g ≡
∫
M̄g,n

ψ
k1
1 · · ·ψknn (1.2)

provided that 3g − 3+ n = ∑n
i=1 ki . To understand the meaning of such an average it is

instructive to consider the first nontrivial example:g = 1, n = 1. In this case we obtain,

〈τ1〉1 =
∫
M̄1,1

ψ. (1.3)

Witten had demonstrated that〈τ1〉1 = 1/24. This result had been actually obtained earlier
by Wolpert[19] who noticed that

〈τ1〉1=̇ 1

2π2

∫
M̄1,1

ωw–p, (1.4)

whereωw–p is familiar Weil–Petersson Kähler(1,1) form which plays very important role
in both the theory of Teichmüller spaces[20] and in string theory[21]. The dot above the
equality sign has the following meaning. The integral

∫
M̄1,1

ωw–p had been independently

calculated by Wolpert[22] and Penner[23] and is known to be equal toπ2/6 so that the RHS
of Eq. (1.4)is equal to 1/12. The same result was obtained by Witten[5] who argues that it
should be additionally divided by 2 because “the generic elliptic curve has two symmetries”.
Thus, evidently, computation of “tautological averages”,Eq. (1.2), is effectively equivalent
(up to numerical prefactors) to calculation of the Weil–Petersson volumes ofM̄g,n. Zograf
[24] had calculated such volumes forn ≥ 3 punctured spheres. Based on these results, Ma-
tone[25] had developed and solved nonpertubatively two-dimensional Liouvillian gravity.
Some of his results had been used and extended in the work by Kaufman et al.[26]. These
results had been further streamlined in recently published monograph by Manin[27].

1.2. From Chern classes to Grassmannians

To make an additional connection with physics, we would like to reanalyze just obtained
results from the point of view of differential geometry of complex manifolds[21,28]. In this
regard, a closedintegral(1,1) formω on a complex manifoldM determines the equivalence
class of a line bundleλ. Recall[21] that a line bundleλ on manifoldM is an assignment
of one-dimensional complexvectorspaceλz to each pointz ∈ M. Sections ofλz are some
functionsfα (z ∈ Bα) assigning an element ofλz to each pointz. Vector spaces at different
points should fit together and this leads naturally to the fiber bundle constructions made of
transition functionsφαβ between different coordinate chartsBα. A metric onλz is a set of
positive functionsgα such thatgα = |φαβ |2gβ . The covariant derivative is defined now as

∇j fα =
{
∂

∂zj
+ ∂

∂zj
ln gα

}
fα. (1.5)
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The bundleλ is holomorphicif in addition

∇̄j fα = ∂

∂z̄j
fα. (1.6)

With the help of such defined covariant derivative the curvature tensorF of λ is obtained
in a standard way[28] with the following result:

F = ∂2

∂z∂z̄
ln gα. (1.7)

Finally, it can be shown[21,28] that

ω = i

2π
F dz ∧ dz̄, (1.8)

and that, actually, such defined(1,1) form coincides with the first Chern class formc1(λ).
In our caseM = M̄g,n and the line bundle is actually a cotangent bundleT ∗(M̄g,n)made
of quadratic differentials [Wolpert, positive]. Wolpert[29,30]had demonstrated that

1

π2
ωw–p = i

2π
F = c1(λ). (1.9)

Substituting this result intoEq. (1.4)we obtain,

〈τ1〉1 =
∫
M̄1,1

c1p(λ), (1.10)

wherec1p(λ) = c1(λ)/2. In such notations this result coincides with Eq. (1.7) of Witten’s
paper[5] (for d = 1). The reason of introducing the factor of 1/2 can be explained as follows.
According to Wells[28, Chapter 6], the traditional construction of Hodge line bundles for
manifolds requires that∫

ω = integer= c. (1.11)

Moreover, ifc is an integer, it is actually equal to the Euler characteristic of the manifold.
In our case,M̄1,1 is an orbifold and for the orbifolds the Euler number can be rational
number according to Thurston[16]. Wells explains how to construct the Hodge bundle for
any Kählerian manifold/orbifold. To this purpose, if the constantc in Eq. (1.11)is not an
integer, it is sufficient to rescale the formω : Ω = c−1ω, so that the rescaled form is the
Hodge form. Since the moduli spacēMg,n is an orbifold,Eq. (1.10)is acceptable and,
hence, with such remarks, coincides with Eq. (1.7) of Witten’s paper (ford = 1) [5].

Obtained results possess additional very important physical information allowing us to
make direct and simple connections with Grassmannians and, hence, with exactly integrable
systems, using arguments different from that of Witten[5] and Kontsevich[9].

LetGC(d, n) be complex Grassmannian manifold. It is known that

GC(d, n) = U(d + n)
U(d)U(n)

, (1.12)
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whereU(n) belongs to the unitary Lie group ofn×nmatrices. Following[31,32]consider
now theclassifyingspaceBU(n) defined by

BU(d) = lim
n→∞

U(d + n)
U(d)U(n)

. (1.13)

The nameclassifyingcomes from the following observation. Suppose there is a mapf from
a base spaceM to BU(d), i.e.f : M → BU(d). Construction of such a map for the case of
orbifolds has been developed by Baily[33] and, in particular, forM̄g,n by Wolpert[29].
Then-vector complex bundleλ over the base spaceM can be expressed as a pullback of
the standardvector bundleξ over BU(d). That isλ = f ∗(ξ). The ith Chern classc∗i of
the vector bundleλ can then be calculated simply by the pullbackf ∗(ci) ∈ H 2i (M,R) of
the elementci in the 2ith cohomology group ofBU(d).GC(d, n) can be embedded in the
complex projective space. This can be achieved for anyn and the limiting casen→∞ is
known asSato Grassmannianin the theory of KP equations[34]. We would like now to
describe such an embedding in some detail.

Recall that the complex projective spacePn is defined asPn := (Cn+1 − {0})/ ∼ with
equivalence relation∼ defined as follows. If a pointP ∈ Pn is given by ann + 1 tuple
(z(0), . . . , z(n)), then another(n+1) tuple(z′(0), . . . , z′(n))definesthe samepointP ∈ Pn

if there is a nonzero numberc such thatz(i) = cz′(i), ∀i, i = 0–n. The system of standard
coordinates(Ui, ϕi) enables us to define a manifold structure onPn:

Ui := {(z(0), . . . , z(n))|z(i) �= 0}, i = 1, . . . , n,

and

ϕi : Ui → Cn :=
(
z(0)

z(i)
, . . . ,

z(i − 1)

z(i)
,
z(i + 1)

z(i)
, . . . ,

z(n)

z(i)

)
. (1.14)

With the help of such mapUi can be identified with the affine spaceCn and the spacePn can
be made from different coordinate patchesUi with the help of transition functionsφαβ as
discussed before. AlinearspaceL in Pn is defined as the set of pointsP = (z(0), . . . , z(n))
of Pn whose coordinates satisfy a system of linear equations

n∑
j=0

bajz(j) = 0, (1.15)

α = 1, . . . , (n−d). The spaceL isd-dimensional if(n−d)×(n+1)matrix of coefficients
[baj] has a nonzero(n − d) × (n − d) minor. In this case there ared + 1 pointsPi =
(zi(0), . . . , zi(n)) in L (i = 0, . . . , d) which spanL. Naturally,L is a line if d = 1, a
plane ifd = 2 and a hyperplane ifd > 2. We shall call these planes asd-planes following
[35]. Thed-planes inPn can be represented by the points in the projective spacePN whose
dimensionN is given by

N = (n+ 1)!

(d + 1)!(n− d)! − 1. (1.16)

To this purpose, let us fix ad-plane inPn and pickd + 1 pointsPi = (zi(0), . . . , zi(n))
which spanL. Using these points let us form(d + 1) × (n + 1) matrix [pi(j)] with
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0 ≤ i ≤ d and 0≤ j ≤ n. Let j0, . . . , jd be a sequence of integers with 0≤ jβ ≤ n

and letp(j0, . . . , jd) denote the determinant of(d + 1) × (d + 1) matrix [pi(jβ)] with
i, β = 0, . . . , d. There will beN + 1 determinants of such type and at least one of them is
nonzero by requirements of linear algebra. Hence, in view ofEq. (1.14), we conclude that
we can use these determinants to determine a point in the complex projective spacePN . The
coordinates of this point are calledPlücker coordinatesof L in PN and such an embedding
of the complex Grassmannian manifold (ofd-planes inPn space) into complex projective
spacePN is calledPlücker embedding. Not every point inPN arises fromd-plane inPn.
Plücker coordinatesp(j0, . . . , jd) obey the following set of (Plücker) equations

d+1∑
j=0

(−1)jp(j0, . . . , jd−1kj )p(k0, . . . ,
√
kj , . . . , kd+1) = 0. (1.17)

Herej0, . . . , jd−1 andk0, . . . , kd+1 are sequences of integers with 0≤ jβ , kξ ≤ n with√
kj meaning that the integerkj has been removed from the sequence.
As it is shown by Miwa et al.[34] Plücker coordinates represent the location ofτ function

of the KP hierarchy inside the Grassmannian while Plücker equations are in one-to-one
correspondence with the Hirota bilinear equations. Hence, the connection between the
averages given byEq. (1.2)and KP (or, more exactly, KdV) hierarchy naturally follows.
The determinants, which are points inPN , have probabilistic meaning which is discussed
below. To this purpose we have to introduce some additional concepts.

1.3. From Grassmannians to Schubert varieties

Consider a sequence of subspaces (cellular decomposition), i.e.A0 ⊂ A1 ⊂ · · · ⊂ Ad of
a fixed space, e.g.Pn, each properly contained in the next, whose dimensions dimAi = ai ,
provided that 0≤ a0 < a1 < · · · < ad ≤ n. Such construction is calledflag. Let
now Ω(A0, . . . , Ad) be the subsetL of GC(d, n) consisting of alld-planes satisfying
dim(L∩Ai) ≥ i for i = 0, . . . , d. Thus, if dimAi = i ∀i, thenΩ(A0, . . . , Ad) is made of
a singled-plane, while if dimAi = n− d + i ∀i, thenΩ(A0, . . . , Ad) = GC(d, n).

Definition 1.1. Ω(A0, . . . , Ad) is calledSchubert varietycorresponding to the flagA0 ⊂
A1 ⊂ · · · ⊂ Ad . Ω(A0, . . . , Ad) defines a homology (actually, cellular homology[32])
class in the homology ringH∗(GC(d, n);Z).

Definition 1.2. Homology class inH∗(GC(d, n);Z) is calledSchubert cycle. Because
the homology class depends only on the integersai = dimAi , it is appropriate to write
Ω(A0, . . . , Ad) = Ω(a0, . . . , ad), where 0≤ a0 < a1 < · · · < ad ≤ n.

It can be shown[12] that the product of any two Schubert cycles can be uniquely expressed
as a linear combination of other Schubert cycles. This observation is central for development
of Schubert calculus[12,35,36].

Remark 1.3. Gepner[37] had demonstrated that all results of rational conformal field the-
ories can be actually obtained from physically reformulated Schubert calculus. Additional
physical refinements of these ideas can be found in the work by Witten[38].
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H∗(GC(d, n);Z) is generated by thespecialSchubert cycles given by

σ(i) = Ω(i, n− d + 1, . . . , n) (1.18)

for i = 0,1, . . . , n − d. These results allow to prove[12,35,36]the following theorem of
central importance for the whole development presented in the rest of this paper.

Theorem 1.4. For all sequences of integers0 ≤ a0 < a1 < · · · < ad ≤ n (which we
denote asa) the following determinantal(Giambelli’s-like) formula holds in the homology
ring H∗(GC(d, n);Z):

Ω(a) = |σ(ai + j − i)|, 0 ≤ i, j ≤ n− d (1.19)

with |σ(ai + j − i)| being a determinant made of special cycles.

Remark 1.5. The name Giambelli comes from the fact that structurally the same expression
exists for the Schur polynomialsSa which was discovered by Giambelli[39–42]. The Schur
polynomials are characters of the general linear group on symmetrized complex linear vector
spaceEa [39–42]. In the light of results presented earlier we can associate the determinant
p(j0, . . . , jd)with that for special Schubert cycles,Eq. (1.19), so that the Schur polynomials
areτ functions of KP hierarchy. The formal correspondence between the Schur polynomials
andEq. (1.19)is not coincidental. It can be proven[42] that, actually, there is an isomorphism
Θ betweenSa andΩ(a).

Remark 1.6. The topological meaning ofEq. (1.19)had been clarified by Porteous[43]
and also by Horrocks[44] and, later, by Carrel[45]. All these results can be actually
deduced directly from much earlier fundamental papers by Chern[46] and Ehresmann
[47].

We would like to describe briefly these results since they are essential for correct physical
understanding of the meaning of intersection numbers. To this purpose let us observe that
for k-cycleA andn − k cycleB on ann-dimensional manifoldM thePoincaré dualsof
these cycles are closedn − k andk differential formsϕ andψ respectively so that the
intersection number#(A · B) of these cycles in homology is equal to the wedge product of
these two forms in cohomology[12], i.e.

#(A · B) =
∫
M

ϕ ∧ ψ. (1.20)

This definition can be extended to describe the intersection of subvarietiesV andW of a
complex manifoldM and it is possible to prove that Schubert calculus is just a special case
of such more general algebra known in the literature asChow algebra[8] (also as Chow
ring [41]). Next, we need a notion of a divisor.

If the manifoldM can be decomposed as

M = V1 ∪ · · · ∪ Vm, (1.21)

then one introduces the following definition.
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Definition 1.7. DivisorD onM is locally finite formal linear combination

D =
∑

aiVi (1.22)

of irreducible analytic hypersurfacesVi of M.
Definitions of “local finiteness” and “irreducibility” are given in[12, p. 130]. The con-

stantsai are normally some integers. ForGC(d, n) Schubert cycles provide the desired
decomposition of the Grassmannian[12]. The following theorem is of central importance
[12].

Theorem 1.8. The Chern classc1(λ), Eq. (1.9), of the line bundleλ represents the Poincaré
dual of the fundamental homology cycle carried by the divisor D, i.e.

i

2π

∫
M

F ∧ ψ =
∑

ai

∫
Vi

ψ (1.23)

for every real closed2n− 2 formψ .

Consider now some implications of this theorem. First, in the case ifM is compact
Riemann surface, a divisor onM is just a finite sum

D =
∑

nipi (1.24)

of pointspi ∈ M with multiplicities ni . CombiningEqs. (1.23) and (1.24)produces the
Poincaré–Hopf index theorem

i

2π

∫
M

F =
∑
i

ni = χ(M). (1.25)

This theorem played central role in our earlier works of 2+1 gravity[1,2]. This observation
clarifies both the meaning of numbersni and pointspi : for vector (or line) fields these
points are associated with singularities of the field. These singularities had been interpreted
as masses.

Remark 1.9. Generalization of this result to higher dimensions had been developed by
Chern and Weil (CW). The up-to-date exposition and generalization of their results can be
found in[48] and, in principle, provides an opportunity to describe 3+ 1 gravity in a way
similar to that developed for 2+1-dimensional case. Such approach to gravity is very close
in spirit to that originally suggested by Regge[49].

We need this observation in the present context as well for the following reasons. By
definition, a subsetV of an open setU ∈ Cn is an analytic varietyif for any p ∈ U

there exists a neighborhoodU ′ of p in U such thatV ∩ U ′ is common zero locusof a
finite collection of holomorphic functions{fi} on U ′. In particular,V is called an ana-
lytic hypersurface if locallyV is zero locus of a single nonzero holomorphic functionf ,
i.e. V = {f (z) = 0} in the neighborhood of 0∈ V . Accordingly, for decomposition,
Eq. (1.21), Vi = {fi(z) = 0} with Vi irreducible at 0. All these facts lead to the following
definition.

Definition 1.10. An algebraic varietyV ⊂ Pn is the image inPn of zero locus of a collection
of homogenous polynomials defined inCn+1, i.e.V = (Fi (z0, . . . , zn) = 0).
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For the line bundleλ on M it is possible to associate sections withFi if M can be
embedded intoPn (and, in our case, it can be embedded since we had mentioned already
thatλ = f ∗(ξ)with ξ ∈ BU(n)). Suppose now that for some pointz∗ ∈ M ofn-dimensional
complex manifoldm sections are linearly dependent. Then, according to CW theory[48,50],
this fact can be written as

fα1 ∧ · · · ∧ fαm = 0. (1.26)

This equation is multidimensional analogue of the Poincaré condition (e.g. read Remark
4.2 of[2]) for the singularities of the line/vector fields on surfaces. Thedegeneracy setis set
of all pointsz∗i for which condition given byEq. (1.26)holds. In the most general case it is

m−1-dimensional submanifold̂D ofM. Consider now a cycleα onM of dimensionr lesser
than that ofD̂. Let such a cycle meet̂D transversely at the pointz∗i ∈ D̂ then,f (α) will
meet some Schubert cycleΩ(a) also transversely at the pointf (z∗i ) of the Grassmannian
so that the intersection number off (α) with Ω(a) at f (z∗i ) will be the same as that for

α meetingD̂ onM. Taking into accountEqs. (1.20) and (1.23)and alsoTheorem 1.8, we
conclude thatcr(λ)(α) = #(α, D̂). With little additional work it can be shown[12] that

Ω(α) = |cαi+j−i (λ)|, 0 ≤ i, j ≤ n− d (1.27)

to be compared withEq. (1.19). This result was obtained by Porteous[43] and is known in
the literature as Porteous formula[12,41].

1.4. From Schubert varieties to directed random walks

Porteous formula can be seen as a special case of much more comprehensive result of Weil
(and developed by Chern) known asWeil homomorphism. In view of this homomorphism,
the result given byEq. (1.27)can be reinterpreted as Schur polynomial (e.g. read discussion
following Eq. (1.19)) and, hence, asτ function of KP hierarchy. Schur polynomialsSλ
originate from the known[40] identity for indeterminates{xi}

(x1 + · · · + xm)n =
∑
λ n

f λSλ(x1, . . . , xm), (1.28)

where use of the notationλ  n is meant to say thatλ is partition ofn. Partitions are best
represented by the Young tableaux. Accordingly, the factorf λ denotes a number of standard
tableaux of a given shapeλ.

Eq. (1.28)can be rewritten in a slightly different form as follows:

(x1 + · · · + xn)M =
∑

(m1,...,mn)

M!

m1!m2! · · ·mn! x
m1
1 · · · xmnn (1.29)

provided thatM = m1 + · · · +mn. This observation allows us to write Schur polynomial
Sλ in the form

Sλ(x1, . . . , xn) =
∑

m=(m1,...,mn)

Kλ,mx
m1
1 · · · xmnn (1.30)

with Kλ,m being some coefficients (Kostka numbers)[42].
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Fig. 2. A typical directed random walk.

Eq. (1.30)can be given probabilistic meaning in terms of the directed random walks.
Indeed, following[42,51], consider planar lattice. On this lattice consider a directed pathP

from (a,1) to (b,N). The information about this path can be encoded into multisetHory(P )
of y-coordinates of the horizontal steps ofP . Define

w(P ) =
∏

i=Hory(P )

xi . (1.31)

To facilitate reader’s understanding, we illustrate these ideas onFig. 2. In this figure
Hory(P ) = {1,3,3,6} and, accordingly,w(P ) = x1

1x
2
3x

1
6. Next, we need to extend this re-

sult to an assembly of directed random walks (“vicious” random walkers in terminology of
Fisher[52]). That is we need to consider the products of the typew(P1) · · ·w(Pk) ≡ W(P̂ ).
Finally, the generating function for an assembly of such vicious walkers is given by

hb−a(x1, . . . , xN) =
∑
P̂

W(P̂ ), (1.32)

whereW(P̂ ) is made of monomials of the typexm1
1 x

m2
2 · · · xmNN provided thatm1 + · · · +

mN = b − a. The following theorem is proven in[42,51].

Theorem 1.11. Given integers0< a1 < · · · < ak and0< b1 < · · · < bk, letMi,j be the
k × k matrix

Mi,j = hbj−ai (x1, . . . , xN), (1.33)

then,

detM =
∑
P̂

W(P̂ ), (1.34)

where the sum is taken over all sequences(P1, . . . , Pk) = P̂ of nonintersecting lattice paths
Pi : (ai,1)→ (bi, N).

Corollary 1.12. Put nowai = i andbj = λi + j in Eq. (1.33)provided that1≤ i, j ≤ k
with λ being partition of N with k parts then,detM = Sλ(x1, . . . , xN).
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Theorem 1.11provides desired connection between the vicious random walkers and the
τ function of KP hierarchy.

1.5. Organization of the rest of this paper

In Section 2we provide some facts from the theory of random vicious walkers using
results of Fisher[52], Huse and Fisher[53] and Forrester[54]. We argue that these results
can be obtained also with the help of the Bethe ansatz method applied to one-dimensional
nonideal Bose gas. Such observation is helpful for developing connections between the
Yang–Baxter equation, symmetric functions and Schubert polynomials. The obtained Bethe
ansatz wave function is reinterpreted in terms of the Gaussian unitary ensemble of ran-
dom matrices. Using some results for random matrices summarized by Mehta[55] and
more recent results by Tracy and Widom[56] (and Forrester[57]) we discuss relations
between the Kontsevich matrix Airy integral and that coming from the Gaussian unitary
ensemble. We argue that both integrals areτ functions of KP hierarchy. Moreover, we
demonstrate that these integrals are actuallyτ functions for KdV hierarchy of equations
(that is they are only a special case of KP hierarchy) and, hence, both can be used as
solutions of the W–K model. The arguments ofSection 2are too general. They do not
contain explicit reference to 2+1 gravity, moduli space, etc. This deficiency is corrected in
Sections 3 and 4which contain new combinatorial proof of the main identity obtained by
Kontsevich[9]:

∑
∑
di=3g−3+n

〈τd1 · · · τdn〉g
n∏
i=1

(2di − 1)!!

λ
2di+1
i

=
∑
G∈Γg,n

2−V(Γ )2E(Γ )

|Aut(G)|
∏

e∈E(G)

1

λi(e) + λj(e) . (1.35)

This identity connects the observables of topological quantum gravity,Eq. (1.2), with av-
erages of the random matrix (Kontsevich) model associated effectively with the ribbon
graphsΓg,n representing the combinatorial moduli spaceMcomb

g,n of marked Riemann sur-
faces of genusg. To avoid repeats of technical details describing random matrices, ribbon
graphs, etc., discussed inSections 3 and 4, we only notice thatV(Γ ) in Eq. (1.35)rep-
resents the total number of vertices andE(Γ ) the total number of edges of the ribbon
graphΓg,n. Mathematically, the identity,Eq. (1.35), is just the statement that there are
different but equivalent ways to present partitions discussed inSection 1.4. In Section 3
we connect these partitions with some results coming from Nielsen–Thurston theory of
surface automorphisms. As it was demonstrated in[1–4], this theory provides natural math-
ematical framework for description of dynamics of 2+ 1 gravity. In these references the
canonical (fixed genusg) partition function for 2+ 1 gravity was obtained. This partition
function was used for description of the dynamical transition from the pseudo-Anosov to
Seifert-fibered (periodic) regime (phase) of 2+ 1 gravity. We remind our readers about
these concepts within the boundaries of Nielsen–Thurston theory. InSections 3 and 4we
argue that the W–K partition function is relevant for the Seifert-fibered phase. This phase
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was not discussed in[1–4]. We should warn our readers that complete description of the
Sefert-fibered phase requires more than just the W–K model. For instance, Kulkarni and
Raimond[58] had found a very interesting connection between the Seifert-fibered and
anti-de Sitter three manifolds which are just Lorentz manifolds of constant negative cur-
vature. Such anti-de Sitter three manifolds had been recently classified by Francois[59].
In spite of the fact that they have received considerable attention in physics literature[3]
recently, the complete description of this phase (which by the way contains all known crys-
tallographic groups and much more[60]) in physical terms remains challenging research
problem.

Thus, the results of[1,4] for the partition function of 2+ 1 gravity should be extended
to reach an accord with results of W–K model. To this purpose, following Nielsen[61],
dynamics of the Riemann surface homeomorphisms should be lifted to the universal cover,
e.g. to the Poincaré disc model ofH 2. In such model the set of geodesics (geodesic lam-
ination) is represented by the set of nonintersecting arcs (i.e. circular segments whose
ends lie onS1∞). The combinatorial arrangement on the disc is described by the Catalan
numbersCn. These numbers had been used earlier in our work[1], for construction of
the partition function. In this paper we use this combinatorial data in order to establish
several important bijections: (1) from the set of arcs to the set of Dyck paths,Fig. 5; (2)
from the set of Dyck paths to the set of parallelogram polyominoes,Fig. 6; (3) from the
set of polyominoes to the set of Young tableaux; (4) from the set of Young tableaux to
the set of vicious walkers,Figs. 7 and 8. This chain of bijections is needed in order to
bring our earlier obtained results for the partition function in accord with the LHS of the
Kontsevich identity,Eq. (1.35). To bring this partition function in accord with the RHS
of this identity the ribbon graphs need to be constructed. This is discussed inSection
4. Unlike Kontsevich[9] and others[62–64], we do not use quadratic differentials (dis-
cussed earlier in our papers[1,2]) for construction of these graphs. Our method is based
on use of known various equivalent geometrical ways to describe the combinatorics of
Catalan numbers[42]. The edges of thus constructed ribbon graphs are replaced by the
paths of vicious walkers so that in the end using combinatorics of the Young tableaux
the partition function for assembly of vicious walkers acquires the form of the RHS
of Eq. (1.35).

Section 5is included in this work for several reasons. First, it discusses the issue of
universality of the W–K model from the point of view of dynamical systems theory. By
universality we mean the fact that partition functions of W–K and many related models
to be discussed briefly in this section are solutions of the KdV hierarchy. The reasons
for this universality can be traced back to the very basic properties of quasiconformal
transformations known already to Ahlfors long time ago[65]. Although in[3] these trans-
formations had been discussed extensively, in this paper more up-to-date information is
presented to make it relevant to the results obtained in earlier sections. This includes some
facts about the Thompson and the Ptolemy groups, about their connections with binary
trees (and, hence, with Catalan numbers) and their relations with the universal Teichmüller
and moduli spaces, etc. Second, it discusses briefly some potential physical and biolog-
ical applications of the obtained results. Finally, it discusses connections with Frobenius
manifolds, self-dual Einstein equations, etc., thus leaving many problems open for further
study.
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2. From vicious walkers to Kontsevich model via Gaussian unitary ensemble of
random matrices

Following Forrester[54] and Fisher[52], we would like now to formulate a lock step
model of vicious walkers. Incidentally, this model is just many walks generalization of the
directed polymer model considered in our earlier work[66]. The continuum limit of the
distribution function for this directed polymer produces the Euclidean version of the Dirac
propagator for particle whose mass is associated with bending probabilities to be discussed
below. In case of many walkers the Fermionic nature of the Dirac “particles” (walks) imposes
a sort of Pauli principle which forbids two walks to intersect. This is characteristic to all
quantum many body problems where all “particles” live in the same “world time”[67].
In the theory of Brownian motion each walker is allowed to have its own world time[68]
so that, accordingly, one can have many world times quantum mechanics. We shall refrain
from discussion of these options referring interested reader to current literature[69]. The
lock step model assumes just one “world time”. Technically this means the following.

We consider a square lattice wherex-coordinate is assigned for “space” while the
y-coordinate is assigned for “time”. Ifp walkers are labeled in linear sequence along
x-axis so that one has

x1 < x2 < · · · < xp (2.1)

at “time” t = 0, the same inequalities should hold for all subsequent times. The walkers
start either on the even or on the odd numbered sites on thex-axis. At each tick of the
clock each walker moves either to the right or to the left (along lattice diagonals) with equal
(bending) probabilityw. The probabilities, in general, may not be equal and are associated
with masses of the Dirac particles as discussed in our work[66]. Because of imposed initial
condition, no two walkers can occupy the same lattice space at any time. This circumstance
makes walkers “vicious”. Letx0 = (x1,0, . . . , xp,0) be the initial configuration of such
vicious walkers andx = (x1, . . . , xp) be the final configuration at timet . To calculate
the total number of walks starting att = 0 at x0 and ending att at x we need to know
the probability distributionWp(x0 → x; t) that the walkers proceed without passing, i.e.
maintaining the inequalities

xj−1(t
′) < xj (t ′), j = 2,3, . . . , p for 0 ≤ t ′ ≤ t (2.2)

from their initial configuration at timet = 0 to their final configuration at timet . It is of
interest to study this problem for large times:t → ∞. In this case it is possible to make
a transition to the continuum limit in our study of the probability distribution. In doing so,
we shall follow the arguments of Huse and Fisher[53]. To begin, we need to recall that in
the continuum limit the probability distributionW0

p(x0 → x; t) for p independentrandom
walkers is known to be

W0
p(x0 → x; t) = exp{−|x − x0|2/2Dt}

(2πDt)p/2
. (2.3)

The diffusion constantD sets up the scale since, as usual,〈(xj − xj,0)2〉 = Dt. Because
of use of a single world time for all walkers the above distribution function can be also
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viewed as distribution function for asinglewalker inp-dimensional Euclidean space. The
restrictions given byEq. (2.2)impose additional constraints that such a walker must not cross
any (hyper)planes described by the set of equationsx1 = x2, x2 = x3, . . . , xp−1 = xp. In
view of the results ofSection 1, e.g. seeFig. 2 and discussion related to it, the assembly
of these planes forms Grassmannian manifold. This statement can be clarified further by
considering the following example. Following Gaudin[70] consider Schrödinger equation
for one-dimensional Bose gas ofp particles interacting via point-like pairwise interaction
potential. The dimensionless form of the Schrödinger equation for such particle system is
given by

−
p∑
i=1

∂iΨ

∂ix2
+ 2c

∑
i<j

δ(xi − xj )Ψ = EΨ. (2.4)

This equation is equivalent to the boundary value problem of obtaining the wave function
Ψ of the equation

−∆pΨ = EΨ, (2.5)

where∆p is justp-dimensional “free” Laplacian, and the wave functionΨ is subjected to
the set of constraints:(

∂

∂xi
− ∂

∂xj

)
Ψ |xi−xj=0+ = 2cΨ, 1≤ i < j ≤ p. (2.6)

The conditionΨ = 0 on the hyperplanes is achieved in the limitc = ∞ according to Gaudin
[70]. It can be shown that for anyc solution of the corresponding quantum mechanical
problem is obtained with the help of the Bethe ansatz method[70]. Moreover, any problem
solvable by the Bethe ansatz method is essentially of the type just described as had been
demonstrated rigorously by Gutkin[71]. Therefore, not surprisingly, that there are deep
connections between the classical exactly integrable systems of KP type and the quantum
mechanical exactly integrable systems solved by the Bethe ansatz method[72]. The Hecke
algebra leading to the Yang–Baxter equations providing mathematical justification of the
Bethe ansatz method is coming from some particular representation of the symmetric group
[73] and, hence, is connected with Schur and related polynomials. Some additional details
can be found in[74].

The mathematical problem posed byEqs. (2.5) and (2.6)can be equivalently formulated
as problem about properties of random walk insidep-dimensional kaleidoscope. That is we
are looking for solution of an eigenvalue problem for “free” Laplacian compatible with some
reflection group[70,71]. In the simplest cases these are just subgroups of the symmetric
groupSp made out of even and odd permutations. In view of this, we obtain,

Wp(x0 → x; t) =
∑
g∈Sp

ε(g)W0
p(gx0 → x; t), (2.7)

whereε(g) = ±1 depending upon the symmetry of permutation (even or odd). Taking
Eq. (2.3)into account, this result can be rewritten equivalently as

Wp(x0 → x; t) = Up(x0, x; t)exp{−(x2 + x2
0)/2Dt}

(2πDt)p/2
, (2.8)
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where

Up(x0, x; t) =
∑
g∈Sp

ε(g)exp

[
(x · gx0)

Dt

]
. (2.9)

Some short calculation explained in[53] produces

Up(x0, x; t) " const. ∆(x)∆(x0)/(Dt)np (2.10)

with const. = 1/1!2! · · · (p − 1)!, np = (1/2)p(p − 1) and∆(x) being the Vandermonde
determinant:

∆(x) =
∏
i<j

(xi − xj ). (2.11)

Remark 2.1. From standard texts in probability theory, e.g. see[75], it is known that
non-normalized expression for the probabilityW0

p(x0 → x; t) is the long time limit of
the formula providing the total number of walks ofn steps (sincet � n) from pointx0 to
pointx. Accordingly,Eqs. (2.7)–(2.10)provide the total number of nonintersecting directed
walks and, hence,Wp(x0 → x; t) ≈ detM as shown inEq. (1.34).

It is convenient to assume now thatx = x0. Then, upon rescaling, the following result
holds:

Wp(x = x0; t) ≡ Pp(x1, . . . , xp) = const.exp(−x2)∆2(x). (2.12)

This is just the probability distribution of eigenvalues of random matrices from the Gaussian
unitary ensemble[55]. Following Dyson[76] define then-point correlation function by

Rn(x1, . . . , xn) = p!

(p − n)!
∫ ∞

−∞
· · ·
∫ ∞

−∞
Pp(x1, . . . , xp)dxn+1 · · ·dxp. (2.13)

Using this definition the connectedn-point correlation functionsTn(x1, . . . , xn) are defined
in a usual fashion, e.g.

T1(x) = R1(x), T2(x1, x2) = −R2(x1, x2)+ R1(x1)R2(x2),

etc. Using method of orthogonal polynomials[55] it can be demonstrated that

Rn = det[Kp(xi, xj )]|i,j=1,...,n, (2.14)

where the kernelKp(xi, xj ) is given by

Kp(x, y) =
p−1∑
k=0

ϕk(x)ϕk(y) (2.15)

with functionsϕk(x)depending on the random matrix ensemble used. In the case of Gaussian
unitary ensemble they are given by

ϕk(x) = (2kk!
√
π)−1/2 exp

(
x2

2

)(
− d

dx

)j
exp(−x2). (2.16)
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The connectedn-point correlation functionTn(x1, . . . , xn) can be neatly represented using
the kernelKp(x, y) as follows[55, p. 92]:

Tn(x1, . . . , xn) =
∑
P

Kp(x1, x2)Kp(x2, x3) · · ·Kp(xn, x1), (2.17)

where the sum is over all(n − 1)! distinct cyclic permutations of indices(1, . . . , n). For
p→∞ the kernelKp(x, y) can be calculated and in terms of the rescaled variables it was
obtained independently by Tracy and Widom[56] and by Forrester[57]:

K(X, Y ) = Ai(X)Ai′(Y )− Ai(Y )Ai′(X)
X − Y , (2.18)

whereAi(y) denotes the Airy function

Ai(y) =
∫ ∞

−∞
exp(i(1

3x
3 − xy))dx, (2.19)

and the prime denotes differentiation with respect to its argument. Following Kontsevich
[9] we define now the matrix Airy function analogous to the “scalar” case

A(Y) =
∫

exp(i tr(1
3X3 − XY))dX, (2.20)

whereX and Y are HermitianN × N matrices for someN . After some computation
Kontsevich obtains

A(Y) = (2π)N(N−2)/2 det(A(j−1)(Yi))

det(Y j−1
i )

, (2.21)

where

A(j−1)(yi) =
∫ ∞

−∞
dx xj−1 exp

(
i

(
x3

3
− xyi

))
=
(

i
∂

∂yi

)j−1

Ai(yi). (2.22)

For i, j = 1,2 we obtain,

A(X, Y )

(2π)1/2
= K(X, Y ), (2.23)

that is the Tracy–Widom kernel and the Kontsevich Airy matrix integral are practically
identical. Naturally, it is of interest to find out if this result will hold fori, j > 2. Comparing
Eqs. (2.14), (2.17) and (2.23)we conclude thatEq. (2.17)should be considered as a likely
candidate for further treatment. This conclusion is in accord with recent results of Okounkov
[77]. We shall use some of his results below inSection 3while in this section we would
like to discuss different approach. To this purpose, following Mehta[55], let us notice that
correlation functionRn, Eq. (2.13), can be presented in the following form:

Rn =
∑
P

(−1)n−m
m∏
1

Kp(xa, xb)Kp(xb, xc) · · ·Kp(xd, xa), (2.24)

where the permutationP is a product ofm exclusive cycles of lengthsh1, h2, . . . , hm of
the form(a → b → c → · · · → d → a),

∑m
1 hj = n. Comparison betweenEqs. (2.17)
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and (2.24)indicates that if, say, the connectedn-point correlation functionTn is τ function
of KP hierarchy, then correlation functionRn should possess this property as well.

To prove that bothRn andTn are indeedτ functions several steps are required. First, we
would like to reconsiderEq. (2.21)in the light of subsequent refinements of Kontsevich
work in physics literature. Following Di Francesco[78] the Kontsevich integralΘN(Λ) is
given by

ΘN(Λ) =
∫

exp[tr(i(M3/6− (ΛM2/2)] dM∫
exp[−tr(ΛM2/2)] dM

, (2.25)

whereΛ is diagonalN×N real matrix with elementsλ = (λ1, . . . , λN) along the diagonal
andM beingN ×N Hermitian matrix. After some calculations this integral can be brought
to the following form:

ΘN(Λ) = |z,Dz,D2z, . . . , DN−1z|
|1, λ, λ2, . . . , λN−1| , (2.26)

where

z = z(λ) =
∫ ∞

−∞
dm

√
λ

2π
exp

[
i

(
m3

6
+ mλ2

2
− λ3

3

)]
, (2.27)

and

D = λ+ 1

2λ2
− 1

λ

d

dλ
. (2.28)

The Vandermonde determinant∆(λ), e.g. seeEq. (2.11), is written in the present case as

∆(λ) = |1, λ, λ2, . . . , λN−1| (2.29)

so that the expression in the numerator ofEq. (2.26)is also a determinant. Second, since
z(λ) is a solution of Airy’s equation

(D2 − λ2)z(λ) = 0 (2.30)

written in a somewhat unconventional form, it is possible to replace terms of the type
D2pz(λ) in the determinant ofEq. (2.26)by λ2pz(λ) and, analogously,D2p+1z(λ) by
λ2p+1z̄(λ), where

z̄(λ) = 1

λ
Dz(λ). (2.31)

This allows us to rewriteΘN(Λ) in the following form:

ΘN(Λ) = |xN−1z, xN−2z̄, . . . |
|xN−1, xN−2, . . . ,1| (2.32)

with x = 1/λ. Third, if the asymptotic expansions ofz andz̄ given by

z(λ) =
∑
k≥0

ckλ
−3k, (2.33)
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z̄(λ) =
∑
k≥0

dkλ
−3k (2.34)

with known coefficientsck anddk are substituted intoEq. (2.32)it acquires the following
final form:

ΘN(Λ) =
∑

n1,...,nN≥0

N∏
i=0

a(imod 2)
ni

|x3n1+N−1z, x3n2+N−2z̄, . . . , x3nN |
|xN−1, xN−2, . . . ,1| . (2.35)

From this form one can recognize at once the Jacobi–Trudy formula[39–42]for the Schur
polynomialsSn given as the ratio of determinants. Since Schur polynomials areτ functions
of the KP hierarchy as we had discussed inSection 1, it is clear thatΘN(Λ) is alsoτ function
of KP hierarchy. Due to specific form of this function (it contains only the odd powers ofλ)

suchτ function is actuallyτ function for the KdV hierarchy in accord with Miwa et al.[34].
It remains to demonstrate now thatEqs. (2.17) and (2.24)also can serve asτ functions of
KdV hierarchy. Evidently, forn = 2 this is the case in view of the arguments just presented.
To prove that this is the case forn > 2 it is sufficient to employ the Littlewood–Richardson
(“fusion” formula in physics terminology) rule given by

SµSν =
∑
λ

CλµνSλ (2.36)

with the Littlewood–Richardson coefficientsCλµν assumed to be known[39–42]in principle.
Successive applications of this formula toEqs. (2.17) and (2.24)produces a combination of
Schur polynomials each of which isτ function of KP hierarchy. Moreover, since forn = 2
suchτ function was that for KdV hierarchy, evidently, for the same reasons as discussed
by Di Francesco[78] the general casen > 2 also producesτ functions for KdV hierarchy.

3. Nielsen–Thurston surface automorphisms and partition function of 2 +1 gravity

3.1. Review of Nielsen–Thurston theory

Let S be closed orientable Riemann surface of genusg. The first homotopy group, the
fundamental groupπ1(S) of surfaceS is made of 2g generators{xi, yi}, i = 1− g and a
single relation so that its presentation is known to be

π1(S) = 〈x1, y1, . . . , xg, yg|[x1,y1] · · · [xg, yg]〉. (3.1)

Nielsen has noted that there is one-to-one correspondence between automorphisms ofπ1(S)
and surface self-homeomorphisms. This is summarized in the following proposition.

Proposition 3.1 (Nielsen[68]). If g > 1, then every element of Out(π1(S)) is represented
by a unique isotopy class of self-homeomorphisms ofS.

An important subgroup ofOut(π1(S)) is the mapping class groupMg discussed in
Section 1. Geometrically, this group is finitely generated by theDehn twistsin simple closed
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curves (lamination set) onS whose physical significance we had discussed extensively in our
previous work[4]. A simple closed curveC on an orientable surfaceS has a neighborhood
E homeomorphic to an annulus which is convenient to parameterize by{[r, θ ]|1≤ r < 2}.
The Dehn twist inC can be imagined as an automorphismTC : S → S. It is given by
the identity offE and by [r, θ ] → [r, θ + 2πr] on E . Using results of our previous works
[1–4], let us illustrate these concepts on the simplest example of a punctured torusT 2. In
this caseOut(π1(T

2)) = GL2(Z) andM1,1 = PSL(2,Z). Since any transformation from
PSL(2,Z) is obtainable by projectivization ofSL(2,Z) we discuss everything in terms of
SL(2,Z) with projectivization at the end. Any transformation which belongs toSL(2,Z) is
expressible in terms of 2× 2 matrixA given by

A =
(
a b

c d

)
(3.2)

with integer coefficients subject to condition: detA = ab− cd = 1. The characteristic
polynomial for this matrix is given by

t2 − tr At + detA = 0. (3.3)

This implies that the eigenvalues ofA are either:

(a) both complex (when trA = 0,1,−1),
(b) both equal to±1 (when trA = ±2),
(c) distinct and real (when|tr A| > 2).

If FA is toral automorphism then, transformation (a) is calledperiodicsince(FA)n = 1
for somen (actually,n = 12 by the Hamilton–Cayley theorem), transformation (b) is
called reduciblesince it leaves a simple closed curveC invariant, transformation (c) is
called (pseudo) Anosov ((pseudo) Anosov if the line/vector field on surface (does) does not
contain singularities). Such transformations are of an infinite order. Physical significance of
this fact is explained and illustrated in our previous work[4]. The largest of two eigenvalues
is associated with topological entropy of the line/vector flow and is related to the amount of
stretching of surfaceS and, hence, with the dilatation parameter of the Teichmüller theory.

Nielsen–Thurston theory generalizes the above classification of surface automorphisms
to all surfaces of genusg > 1. Already Nielsen had realized[61] that for g > 1 it is
more convenient to study homeomorphisms of surfaceS by considering their image on the
universal cover ofS which we choose as Poincaré disc model ofH2, i.e. intD∪ S1∞ = H2.
According to Nielsen[61] we have the following proposition.

Proposition 3.2. Any lift h̃ of the surface self-homeomorphism h: S → S to the universal
cover ofS extends to a unique self-homeomorphism of the unit discD, i.e. to int D ∪ S1∞.

If surface self-homeomorphismsh are associated with Dehn twists connected with a
set of simple closed nonintersecting curves homotopic to geodesics (such set is called
geodesic laminationL), then their liftsh̃(L) are associated with some maps of the circle
S1∞ extendable (quasi conformally) to the interior of the discD as discussed in our earlier
work [3] andSection 5. An image of the closed geodesic onS, when lifted toH2, is just a
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segment of a circle whose both ends lie onS1∞. Since geodesics are nonintersecting, circle
segments onS1∞ are also nonintersecting. In order to recover results of W–K model, in
this work we are interested only in theperiodicmaps of the circle as it will be explained
in Section 4(after Eq. (4.4)). In connection with such maps the following remark is of
importance.

Remark 3.3 (A variant of Sarkovskii theorem[79, p. 88]). Letf : S1 → S1 be a continuous
map of the circle with a periodic orbit of period 3. If the lift̃f : R → R has also a periodic
orbit of period 3 then,f has periodic orbits of every period. The condition on the lift map
f̃ cannot be dropped. InSection 5we argue that even though in the case of W–K model
the continuous maps of the circle are to be replaced by the piecewise linear maps still the
period 3 remains as minimal period.

Remark 3.4. As noted by Kontsevich[9], moduli space problem makes sense only for
Riemann surfaces obeying the following set of inequalities:

g ≥ 0, n > 0, 2− 2g − n < 0 (3.4)

with n being the number of distinct marked points (effectively distinct boundary compo-
nents). Boundary components can be eliminated by theSchottky doubleconstruction. This
construction can be performed as follows. IfM is a complex manifold withC1, . . . , Cn
boundary components, one can consider an exact duplicate of it, sayM̂, with the same
number of boundary components, say,Ĉ1, . . . , Ĉn. Evidently, for each pointx ∈ M there is
a “symmetric” pointx̂ ∈ M̂. The Schottky double 2M is formed as a disjoint unionM ∪ M̂
and identifying each pointx ∈ Ci with point x̂ ∈ Ĉi for 1≤ i ≤ n. In the simplest case we
have initially either punctured torus, i.e.g = 1, n = 1, or the thrice punctured sphere, i.e.
g = 0, n = 3. In both cases the Schottky double is a double torus. A double torus has three
geodesics which belong to the geodesic laminationL. The image of these geodesics lifted
to H2 produces three circular arcs whose ends lie onS1∞. This is minimal number of arcs
required for the moduli space problem to make sense. According toRemark 3.3this is also
a minimal period for the periodic homeomorphisms of the circle in view of the Sarkovskii
theorem. More on this topic will be discussed inSection 5.

In the mean time we would like to discuss the general case of Riemann surfaces of genus
g ≥ 1 with n boundary components. It is argued in[80] that the total number of geodesics
on the Schottky double is 6g − 6+ 3n. This is the dimension of space of holomorphic
quadratic differentials (real on each of the boundary components). Hence, in accordance
with Teichmüller theory[20], it is the dimension of the Teichmüller and, accordingly, the
moduli space of such Schottky doubled surface.

Remark 3.5. The dimension of moduli space of Schottky doubled surface coincides with
the dimension of moduli spaceMcomb

g,n of three-valent ribbon graphs used in Kontse-
vich paper[9]. In the present case the same dimension for the moduli space (as ob-
tained by Kontsevich) is obtained without explicit use of the quadratic differentials. More-
over, the equivalent of the Kontsevich–Penner ribbon graphs are to be obtained below in
Section 4.



66 A. Kholodenko / Journal of Geometry and Physics 43 (2002) 45–91

Fig. 3. Combinatorics of Catalan numbers presented through arrangements of nonintersecting arcs (representing
closed hyperbolic geodesics in the upper half plane Poincaré model ofH 2).

It is convenient to map the circle at infinityS1∞ into the real axisR. Accordingly, the arcs
corresponding to closed geodesics on the Schottky doubled Riemann surface will become
semicircles whose ends are located on the real axisR. This is depicted inFig. 3.

The mathematical problem associated with arrangement of the arcs depicted inFig. 3can
be formulated according to Stanley[42] as follows. It is required to find a number of ways
to connect 2n points in the plane lying on a horizontal line byn nonintersecting arcs, each
arc connecting two of the points and lying above the points. The solution of this problem is
just the Catalan number:

Cn = 1

n+ 1

(
2n

n

)
.

It was used before in connection with construction of the partition function for our 2+ 1
gravity model[1,2]. Catalan numbers are very helpful in solving the mathematical problem
of enumeration of meanders. Meanders had been used as well for description of the partition
function of 2+1 gravity[1] and other useful statistical mechanical, dynamical and biological
models[81,82]. Meanders can be easily constructed from the double set of arcs as illustrated
in Fig. 4taken from our earlier work[1].

3.2. Partition function of2+ 1 gravity

W–K treatment of two-dimensional topological quantum gravity is done in the grand
canonical formalism. This means that such treatment requires two steps. First, one should
construct the (canonical) partition function for the fixed genus Riemann surface. Second,
one should perform summation over all genera with some chemical potential. Evidently, the
second step can be performed only if the results of the first step are available. For this reason
in our previous works[1,2,4]only the first step was considered. Since the main Kontsevich
identity,Eq. (1.35), is written for the canonical (fixed genus) case, it is sufficient to consider
the fixed genus case in this work also. In order to reach an agreement with W–K results, it
is necessary to reconsider our earlier obtained results for the canonical partition function of
2+ 1 gravity.

Fig. 4. Construction of a typical meander.
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Let us begin with some reminders. Meander of ordern is a closed nonselfintersecting
curve which intersects some straight line in exactly 2n preassigned points. In[1] we had
discussed the way meander can be constructed from two arc systems, e.g. like those depicted
in Fig. 3. For reader’s convenience we reproduce a fragment of such construction inFig. 4. It
is clear from this figure that, in general, such procedure of constructing meanders will yield
a set of disconnected meanders. For a given fixed numbern let the numberM(k)

n denote the
total number of disconnected topologically distinct meanders whose total number isk. It is
clear that 1≤ k ≤ n, and that

Cn ≤ Mn ≤ C2
n, (3.5)

whereMn = M
(k=1)
n . Each meander configuration has some statistical weightx =

exp{−βJ } (with β being some fictitious inverse temperature andJ is related to the surface
energy) dictated by the physics of the problem[1,4] so that the total canonical partition
functionZ(x) is given by

Zg(x) =
∞∑
n=0

xn
n∑
k=1

M(k)
n gk (3.6)

with g being determined implicitly through the equation

〈k〉 = g
∂

∂g
ln Zg(x) (3.7)

with 〈k〉 denoting the average number of meanders in the clusterk. This number is expected
to be assigned. If this is not the case, the partition function should be written differently.

Remark 3.6. The partition functionZg(x) is written for the system of meanders forming a
measured foliation on a Riemann surfaceS of fixed genusg. Being guided by theProposition
3.2, we would like to consider the lift of such foliation to the universal cover ofS, i.e. to
the unit disc model ofH2.

Remark 3.7. In both[1,4] the main interest in obtaining the partition function was to study
dynamical transition from the pseudo-Anosov (hyperbolic) to periodic (Seifert-fibered)
regime. In the present case only the periodic (i.e. Seifert-fibered) regime is studied. This is
explained inSection 4. Seifert-fibered regime is not discussed in[1,4].Only in this (periodic)
regime W–K results can be recovered from2+ 1 gravity.

To construct the partition function on the unit disc, it is convenient to map the unit disc
into the upper half plane model forH2. Then, the system of arcs representing geodesics
on S is mapped into that depicted inFig. 3. Next, the arc system depicted inFig. 3 is
mapped into the associated random walk as depicted inFig. 5. Because of such mapping,
it becomes possible to connect the combinatorics of vicious walkers discussed inSection
2 with that of arcs and meanders. Indeed, the walk depicted inFig. 5 is directed and is not
allowed to intersectx-axis, except at initial and final points. By analogy withFig. 4one can
think about another Dyck walk (belowx-axis). Since both walks intersect each other only
at initial and final points this situation looks almost the same as for two vicious walkers.
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Fig. 5. A typical Dyck path[42] from (0,0) to (2n,0)made of steps(1,1) and(1,−1) never falling belowx-axis
is in one-to-one correspondence with a typical arrangement of arcs.

Following Labelle[83], we can make it identical to that for the vicious walkers. To achieve
this goal, it is sufficient to translate the upper part by the vector(1,1) while the lower part
by the vector(1,−1) so that one obtains either a problem about statistics of one vicious
walker in the presence of the absorbing wall or about statistics of two vicious walkers. Both
problems are discussed in Fisher’s paper[52] and are actually equivalent. Hence, results of
Section 2can be applied now and one obtains the Tracy–Widom kernel,Eq. (2.18), in the
asymptotic limit of large genus or large number of boundary components. This is obviously
not sufficient. To go beyond this simple minded result requires to make several nontrivial
mappings (bijections). We shall be brief in describing these bijections since details of the
proofs can be found in the published literature.

We begin with the observation that to each Dyck path, e.g. that inFig. 5, one can associate
the Dyck word so that the Dyck path having length 2n is encoded by a Dyck word of length
2n. The word is composed of lettersx and x̄ in such a way that each north–east (respec-
tively south–east) step corresponds to the letterx (respectivelyx̄). The peaks (respectively
troughs) correspond to the factorsxx̄ (respectivelyx̄x). Instead of north–east (respectively
south–east) steps it is possible to choose strictly north (respectively east) steps for the Dyck
paths to get a configuration like that depicted inFig. 2. Hence, we obtain the following set
of bijections: (a) from the set of arcs to the set of Dyck paths; (b) from set of Dyck paths to
the set of Dyck words; (c) from the set of Dyck words to the set of lattice paths from(0,0)
to (n, n) with steps(0,1) or (1,0) never rising above the linex = y (incidentally one can
construct instead the lattice paths which never go below the diagonalx = y [84]). To this set
of bijections we need to add two more now. The first one is between the Dyck path, e.g. that
depicted inFig. 5, and the parallelogram polyomino. Polyomino can be made out of squares
(calledcells). A finite connected union of cells such that the interior is also connected and
there are no cut points is calledparallelogram polyomino. It is defined with accuracy up to
translation. As depicted inFig. 6, a parallelogram polyomino is bordered by two noninter-
secting paths having only north and east steps.Fig. 6depicts bijections between the Dyck
path, the Dyck wordw and parallelogram polyominoβ(w). In such bijection the magnitude
and the order of peaks and troughs determine the shape of the polyomino[85]. Parallelogram
polyomino is in one-to-one correspondence with skew Young (or Ferres) diagram of shape
λ/µ. In the example displayed inFig. 6we have the shape(4,4,4,2,2,1)/(3,2). That is
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Fig. 6. Bijections between the Dyck path, the Dyck word and parallelogram polyomino.

from standard looking Young table of shape(4,4,4,2,2,1) a piece in the upper left corner
is truncated which is also standard table of shape[3,2]. Hence, the skew Young diagrams
differ very inessentially from standard looking Young diagrams. Using this circumstance,
we need to exhibit yet another bijection. It is the most important for our development. To
this purpose we need to useTheorem 1.11andCorollary 1.12in order to state yet another.

Theorem 3.8. There is a weight-preserving bijectionϕ between nonintersecting paths
(P1, . . . , Pk) and column strict Young tableaux of shapeλ with entries from N.

To demonstrate that this is indeed the case, we follow the example discussed in[51].
More general case of skew column strict Young diagram is discussed in[42, Section 7.16].
Following [51] we takek = 4, λ = (5,3,2,2) andN = 6. Although we have now
four nonintersecting paths their trajectories are completely specified by labeling of their
horizontal edges (y-coordinates), e.g. seeFig. 2. The information about the pathPk+1−i
can be placed (encoded) into the rowi of tableauT . In our case the (vicious) paths are
depicted inFig. 7while the corresponding encoding of the Young table is depicted inFig. 8.
Thus, using results ofSection 1, especiallyTheorem 1.11andCorollary 1.12, we obtain the
determinant detM which contains all the configurational information about collection of
vicious walkers. Using results ofSection 2this information is being translated into that for
n-point correlation functionsRn, Eq. (2.24), andTn, Eq. (2.17). Using this information and
by analogy withEq. (3.6)the partition function can be written in the following tentative form:

Z[x] =
∞∑
n=1

∫ n∏
i=1

dyi exp(x · y)Tn[y] ≡
∞∑
n=1

Zn(x), (3.8)
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Fig. 7. Four vicious walkers encoded by their horizontal edges.

where the boldface forx andy variables reflects the fact that they are multidimensional,
e.g.x · y = ∑n

i=1 xiyi , etc. We use the word “tentative” because we would like at this
point to make a connection with recent works by Okounkov[77,86] and Okounkov and
Panharipande[87] who use the asymptotics of Hurwitz numbers to arrive at results similar
to ourEq. (3.8). For reasons which will become clear in the next section and for the sake
of agreement with these recent works,Eq. (3.8)should be rewritten as follows:

Zn[x] = Z[x1, . . . , xn] = (−1)n+1(2π)n/2∏
i

√
xi

E
( x

21/3

)
(3.9)

with

E(x) =
∫ n∏

i

dyi exp(x · y)Tn(y). (3.10)

Remark 3.9. For developments presented in this paperEqs. (3.9) and (3.10)are actually
unnecessary. They are provided, nevertheless, because they are interesting in their own right
and, although the initial arguments in these papers are different from ours, the end results,
e.g.Eq. (3.10), is in accord with ourEq. (3.8).

Fig. 8. The Young tableau which encodes the information about trajectories of vicious walkers.
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The interest in these equations stems from the fact that in the largen limit, Eq. (3.10)
acquires familiar in physics literature path integral form. This fact may lead to some new
physical applications. Already many physical applications of vicious walker models can be
found in papers by Fisher[52] and by Huse and Fisher[53].

In the present case, using results of Tracy and Widom (Eq. (4.6) of[56]) Eq. (2.18)of
Section 2can be rewritten as follows:

K(X, Y ) =
∫ ∞

0
dzAi(X + z)Ai(z+ Y ) (3.11)

with Airy function defined inEq. (2.19). Using Okounkov’s Lemma 2.6 of[77],∫ ∞

−∞
dzAi(z+ a)Ai(z+ b)exp(xz) = 1

2
√
πx

exp

(
x3

12
− a + b

2
x − (a − b)2

4x

)
,

(3.12)

Eq. (3.10)can be rewritten as follows:

E(x)= 1

2nπn/2
exp(1/12

∑n
i x

3
i )∏

i

√
xi

∫ ∞

0

n∏
i

dyi

×exp

(
−

n∑
i=1

(yi − yi+1)
2

4xi
−

n∑
i=1

yi + yi+1

2
xi

)
, (3.13)

provided that the cyclic boundary condition,yi+1 = y1, is imposed. This makes the above
“path integral” reminiscent to that for the ring polymer near hard nonpenetrable wall in the
presence of some stretching force[67].

To make connections with results of Kontsevich[9] we need to rewrite the partition
functionZ[x] as genus expansion:

Z[x] =
∞∑
g=0

Zg(x), (3.14)

where in view ofEq. (1.2),

Zg(x) =
∑

∑
di=3g−3+n

〈τd1 · · · τdn〉g
n∏
i=1

x
di
i . (3.15)

The question arises immediately about connections ofEqs. (3.14) and (3.15)with
Eqs. (3.8)–(3.10). This issue is addressed and treated in[77,87] and, therefore, there is
no need to repeat the arguments presented in these references here. Instead, to reach essen-
tially the same goals we would like to use different arguments in this work.

In Section 1.1we had noticed that the calculation of tautological averages is effectively
equivalent to the calculation of the Weil–Petersson volumes ofM̄g,n. In algebraic geom-
etry there is a Wirtinger formula for such volume calculations[12]. In connection with
Grassmannians and Schubert calculus this formula had been discussed in the fundamental
paper by Chern[46]. Wirtinger-like formula is used in Kontsevich paper as well (e.g. see
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Section 3 of[9]). Hence, the partition function of two-dimensional topological gravity is
effectively the generating function for the Weil–Petersson volumes. In the fixed genus case
such volume according to Kontsevich is given by

volp∗(M̄g,n) = 1

d!

∫
M̄g,n

(p2
1c1(λ1)+ · · · + p2

nc(λn))
d (3.16a)

with c1(λi)being the first Chern class of theith line bundle,i = 1, . . . , nandd = 3g−3+n.
The above expression becomes a true volume when in the setp∗ of indeterminatesp∗ =
(p1, . . . , pn) (arbitrary sequence of positive numbers) eachpi is being put equal to one.
This is not necessary, however, since the quantity of interest is the product given byEq. (1.2)
which is obtainable anyway withpi ’s being different from one. Hence, the indeterminates
actually play a role of an auxiliary variables analogous toxi in Eq. (3.15). The connection
with Schur polynomials and, hence, withτ function is clear if one combinesEq. (1.28)and
Porteous formula,Eq. (1.27)with Eq. (3.16a). Finally, arguments presented inSection 2,
especially,Eq. (2.36), provide needed justification ofEq. (3.15)since the result,Eq. (3.16a)
and (3.16b), of Kontsevich can be equivalently rewritten as

volp∗(M̄g,n) = sgn
∑

∑
di=d

〈τd1 · · · τdn〉
n∏
i=1

p
2di
i

di !
. (3.16b)

To make connection with the matrix models additional steps are required. For instance,
Kontsevich is making a Laplace transform ofEq. (3.16b)in order to obtain

L(volp∗(M̄g,n))(λ1, . . . , λn) =
∑

∑
di=d

〈τd1 · · · τdn〉
n∏
i=1

(2di)!

di !
λ
−(2di+1)
i (3.17)

with λi being the Laplace variable conjugate topi . Taking into account that(2di)!/di ! =
2di · (2di − 1)!! the overall factor of 2d drops out from the main Kontsevich identity,
Eq. (1.35). In view of the results of[77,86,87]and that going to be presented inSection 4,
in order to reach an accord with the result of Kontsevich,Eq. (3.17), it is also necessary
to perform the Laplace transform onZg(x) in Eq. (3.15)provided that this expression is
properly rescaled. The Laplace transform is obtained then as follows:

L(Zg(x))(ξ1, . . . , ξn) =
∫ ∞

0

n∏
i=1

dxi exp(−ξ · x)Zg(x)
1

(2π)n/2
∏n
i=1 x

1/2
i

. (3.18)

Application of the formula∫ ∞

0
dy yn−1/2 exp(−sy) = Γ

(
n+ 1

2

)
s−n−1/2 =

√
2π

(2n− 1)!!

2n+1/2sn+1/2
(3.19)

to Eq. (3.18)produces the expected result:

L(Zg(x))(ξ1, . . . , ξn) =
∑

∑
di=d

〈τd1 · · · τdn〉
n∏
i=1

(2di − 1)!!

(2ξi)di+1/2
, (3.20)

where in order to achieve an agreement with Kontsevich, one needs to make identifica-
tion: λi =

√
2ξi in Eq. (1.35). Clearly, such identification is ultimately connected with
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rescaling made inEq. (3.18). The justification of this rescaling is explained in the next
section. This is also needed for completion of the proof of Kontsevich identity,Eq. (1.35)of
Section 1.

4. Ribbon graphs, Young tableaux and Kontsevich identity

4.1. Construction of ribbon graphs

Ribbon graphs had been invented by Penner[62] (similar construction can be found also
in papers by Harer[88]) for description of the moduli spaceMg,n of Riemann surfaces.
In physics literature similar construction had been independently developed by Saadi and
Zwiebach[63] and later developed in numerous papers by Zwiebach, e.g. see[89] cited
in Kontsevich work[9]. Both Zwiebach and Kontsevich use the Jenkins–Strebel quadratic
differentials (e.g. see Section 3 of our earlier work[2], for condensed summary of their
properties) for construction of the ribbon graphs. In this section we would like to develop
alternative method of construction of ribbon graphs which does not require explicit use of
quadratic differentials. We would like to explain the rationale for constructing the ribbon
graphs in connection with results obtained thus far in this paper. First, the ribbon graphs
appear naturally in matrix models for strings[90] and QCD[91]. Hence, they are physically
interesting and easily constructible using Feynman-like rules known in quantum field theory
[92]. Second, mathematically these graphs are interesting for several reasons: (a) they are
associated with problem of imbedding of, say, trivalent graphs into Riemann surface of fixed
genus[93] and, since graphs are related to combinatorial group theory[94], this problem
is also of group-theoretic interest; (b) these graphs are also related to train tracks discussed
in our work [2]. Because of this connection with train tracks, the number of potential
practical applications is expected to be well beyond particle physics as explained in the
discussion section of[2]. Third, and most important for the purposes of this work, they
are needed for establishing one-to-one correspondence between the topological gravity
and the random matrix models of string theory. The aspects of this correspondence are
discussed in detail in[90]. Mathematically, this correspondence is reflected in the Kontsevich
identity,Eq. (1.35). Hence, following Kontsevich[9] it is necessary to prove that the RHS
of Eq. (1.35)is equal to the LHS. InSections 2 and 3we had demonstrated that the LHS
of the identity,Eq. (1.35), is associated with the enumeration of allowed configurations
for an assembly of vicious walkers. This problem has been mapped into enumeration of
the Young tableau, e.g. seeFigs. 7 and 8. These pictures provide a geometrical way of
describing partitions of non-negative integers. Hence, for ribbon graphs we have to find
analogous partitions. Evidently, the Kontsevich identity,Eq. (1.35), is just the statement
about existence of different but equivalent ways of describing partitions as had been stated
in Section 1.

To describe partitions associated with ribbon graphs we need to construct such graphs
first. To facilitate reader’s understanding, we employ some results on graphs and ribbon
graphs from the pedagogically written paper by Mulase and Penkava[64]. Ultimately, our
way of constructing the ribbon graphs is different from that discussed in this reference since
we are not using quadratic differentials.
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Definition 4.1. A graphΓ = (V, E; i) consists of a finite set of verticesV = (V1, . . . , Vm)

and finite set of edgesE together with a mapi from E to the set(V × V)/S2 of unordered
pairs of vertices called incidence relation. The quantity

aij = |i−1(Vi, Vj )| (4.1)

is the number of edges connecting verticesVi andVj . The degree (valence) of a vertexVj
is the number

◦(Vj ) =
∑
k �=j

ajk + 2ajj (4.2)

which is the number of edges incident to the vertex.

Definition 4.2. A graph isomorphism is a pair(α, β) of bijective mapsα : V → V ′ and
β : E → E ′ that preserve the incidence relation.

To construct a ribbon graph the above definitions should be modified. The modification
consists in labeling of middle points of each edge thus effectively creating extra degree 2
vertices associated with each edge. We denote this extra vertex set asVE . Now the new
set of vertices is the disjoint unionV & VE while the new set of edges is the disjoint union
E & E since the midpoint of each edge now divides it into two parts. The incidence relation
is described now by the map

iE : E & E → V × VE (4.3)

because each edge ofΓE is connecting one vertex ofV to one vertex ofVE . Obviously, an
edge ofΓE is called ahalf edgeof Γ . For every vertexV ∈ V of Γ , the seti−1

E ({V } × VE )
consists of half edges incident toV so that

◦(V ) = |i−1
E ({V } × VE )|. (4.4)

Definition 4.3. A ribbon graph is a graphΓ = (V, E; i) together with a cyclic ordering on
the set of half-edges as depicted inFig. 9.

Such definition of the ribbon graph leads to the following construction of such graph out
of ordered vertices. The strips corresponding to the two half edges are connected following

Fig. 9. A cyclic ordering at the vertex of the ribbon graph as compared with no ordering in the case of a vertex for
ordinary graph.
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Fig. 10. An elementary three-valent vertex associated with geodesics lifted to the Poincaré disc.

the orientation of their boundaries to form ribbons. The final surface is no longer planar in
general. It is an oriented surface whose boundaries are made of boundaries of the ribbons. To
illustrate this construction, let us consider the simplest case first. To this purpose, we recall
that for the case of punctured torus and trice punctured sphere we have three geodesics (on
the Schottky doubled surface) which we lift to the Poincaré disc. We associate with these
geodesics a trivalent graph as depicted inFig. 10.

Next, we make another copy of this picture. Then, we thicken the edges emanating from
the vertices and provide orientation in accord withFig. 9. Next, we glue the strips to each
other. This can be done in two ways. One is depicted inFig. 11while the other is depicted in
Fig. 12. We would like to notice that in both cases we have constructed ribbon graphsΓg,n =
Γ with the number of thickened edges equal to 6g−6+3n number of edges (e.g. three for
both the trice punctured sphere and the punctured torus) in accord with Kontsevich[9]. To
obtain more complicated graphs it is convenient to proceed by induction. To this purpose,
following again[64], we need to define the operations ofcontractionandexpansion.

Fig. 11. One way to make the simplest ribbon graph (the underlying “normal” graph is shown for comparison)
which is topologically equivalent to the punctured torus. Notice that the same underlying “normal” graph also gives
rise to another ribbon graph which is topologically equivalent to the trice punctured sphere (not to be confused
with that depicted inFig. 12).

Fig. 12. Another way of making the simplest ribbon graph (the underlying “normal” graph is also shown for
comparison). The ribbon graph is topologically equivalent to the trice punctured sphere.
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Definition 4.4. If the edgeE of Γ is incident to two distinct verticesV1 andV2 another
ribbon graphΓ ′ calledcontractionof Γ is obtained fromΓ by removing the edgeE and
joining the verticesV1 andV2 to a single vertex with the cyclic ordering at the joint vertex
determined by the cyclic order of the edges incident toV1 starting with the edge following
E up to the edge precedingE, followed by the edges incident toV2 starting with the edge
following E and ending with the edge precedingE.

Evidently, the contraction procedure decreases the number of edges and vertices by one.
Every ribbon graph can be obtained from the trivalent ribbon graph by applying a sequence
of contractions.

Definition 4.5. The expansion of the ribbon graph is operationinverseto the contraction.
This means that every trivalent ribbon graph can be constructed by the expansion proce-

dure starting from a very simple analogue ofFig. 10. In view of the Euler equation

V(Γ )− E(Γ ) = 2− 2g − n (4.5)

such procedure will produce the desired Kontsevich-type trivalent ribbon graph. Let us
consider this construction in some detail. For example some representative contraction and
expansion of an edge is depicted inFig. 13.

Remark 4.6. The reader familiar with our earlier work[1], can easily recognize the white-
head moves characteristic for train tracks. This fact alone is sufficient for making connection
between ribbon graphs and quadratic differentials. Since in the present case no topology
changing moves are involved, this justifies our earlier statement that the results of W–K can
be recovered from the Seifert-fibered (periodic) phase of 2+ 1 gravity.

For any vertex of degreed ≥ 4 there ared(d − 3)/2 ways of expanding it by adding an
edge. Consider a portion ofΓ made of vertex of degreed ≥ 4 andd half edges emanating
from this vertex. Adual to this portion is a convex polygon ofd sides depicted inFig. 14

Fig. 13. Typical contraction–expansion (whitehead) moves characteristic for W–K model.
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Fig. 14. Expansion/contraction of a representative vertex facilitated by the associated with it dual polygon.

along with the underlying vertex. The series of contractions/expansions is ultimately related
to the number of ways a convex polygon withd sides can be triangulated by nonintersecting
diagonals. This number is Catalan number again[42]. Although one may probably use this
observation to develop bijections analogous to those discussed inSection 3, we leave such
an opportunity outside the scope of this work in view of another options to be discussed
below.

To finish our construction of the ribbon graphs we have to keep in mind few additional
facts. First, by looking atFig. 10and realizing that two copies of the disc model ofH2 are
needed for construction of the ribbon graph, it is clear that the process of expansion and
gluing of strips to each other should be allowed to be different in each disc. Hence, we have
to associate the probability of 1/2 to every vertex on each disc. This means that we have to
have an overall (assembly) factor of 2−V(Γ ) for a particular realization of the ribbon graph.
Second, the rest of the automorphisms of the ribbon graph are, evidently, the same as for
the “normal” graph.

This concludes our description of the ribbon graph construction.

4.2. Young tableaux and Kontsevich identity

In Section 3the Laplace transform,Eq. (3.20), of the partition function for an assembly
of vicious walkers has been obtained. Now it is time to explain how these vicious walkers
reemerge with the help of the ribbon graphs. To this purpose let us notice that the bound-
ary components of these graphs can be looked upon as made of polygons as Kontsevich
had noted in Section 2.2 of[9]. Hence, each ribbon graph is can be classified by certain
non-negative integer number of triangles(n3), quadrangles(n4), pentagons(n5), hexagons
(n6), etc. Each edgeEi(Γ ) of the ribbon graph has some lengthli . Evidently, these lengths
can be grouped into sets identified with polygons so that the numbers above represent the
multiplicities for these sets. Suppose that the total lengthL of all polygons is prescribed in
advance. Then, given ribbon graph can be viewed as particular realization of the partition
of L into numbers associated with lengths of these polygons. Alternatively, one can assign
the total number of polygons (that is the total number of facesn in Eq. (4.5)) and consider
partition of this number inton3, n5, n6, etc. In any case, this means that the Young tableaux
can be associated with such partition and, in view of the results ofSection 3, again, the vi-
cious walkers can be linked with such Young/Ferrers tables. The question remains: how to
connect the vicious walkers with ribbon polygons explicitly? To this purpose recallRemark
2.1 and discussion which follows. According to this remark and the following discussion
both correlation functionsRn andTn are defined in fact for vicious walks made out of
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loops. Topologically, our polygons are also loops. Hence, it makes sense to identify the
loops entering into expressions forRn andTn with those coming from polygons associated
with ribbon graphs. This identification requires some care (that is it requires some proofs)
and, hence, cannot be made straightforwardly as we would like to demonstrate now.

If we associate (replace) the polygonal paths by the paths of vicious walkers then, except
at vertices, only “binary interactions” between these walkers need to be considered. These
“binary interactions” are of geometrical origin since they are effectively equivalent to con-
sidering just one vicious walker in the presence of an absorbing wall[52]. According to
Fisher[52], this means that “no walk can penetrate the wall and any walk attempting to do
so is eliminated”. In addition to the geometrical constraint on such walk, the present case
differs from that discussed by Fisher because one has to demonstrate that the walk which
survived encounter with one wall entirely forgets about this encounter when it is facing
the next wall. Fortunately, this is the case. Indeed, the non-normalized distribution function
Qn(x; σ) for the walk starting atx = a and aftern steps reaching the pointx is obtained
by Fisher, e.g. see Eq. (5.5) of[52], and is given by

Qn(x; σ) ≈ e−σn√
π/2

axexp(−x2/2n)

n3/2
, (4.6)

where apart from the factora exp(−σn), one can easily recognize the probability of the
first passage throughx at “time” n for the random walk which had started at the origin:
x = 0 [75]. This probability has yet another interpretation more suitable for the problem
we are discussing. Indeed, following Feller[75, Chapter 3], the same expression describes
probability for two-dimensional (directed) random walkers which had begun their walk at
the origin and aftern steps had ended at some pointx > 0, y > 0 of x, y-plane, provided
that these walkers never cross thex-axis. Evidently, one may associatex-axis with “time”
(in our casen) direction whiley-axis with “space” direction in order to get vicious walk
interpretation of such random walk. In any event, it should be clear that in space direction
(that is perpendicular to the wall) such walk is acting as random and, hence, it “forgets” its
past. This observation provides justification for representation of the “circular” vicious walk
by a sequence ofindependentrandom vicious walkers—one for eachedge of the closed
polygon.

Next, we have to find an analogue of the partition function,Eq. (3.8). This is accomplished
in several steps. First, we notice thatEq. (3.8)does not contain information about the number
of steps in the walk, only about the number of walks. UsingEqs. (3.8) and (4.6)we introduce
for each edgethe following generating function (known as perimeter measure[86,87])

C(ξ1, ξ2) =
∫ ∞

0
dx P (ξ1, ξ2; x), (4.7)

where

P(ξ1, ξ2; x) =
∫ ∞

0
dn1

∫ ∞

0
dn2Qn1(x; ξ1)Qn2(x; ξ2), (4.8)

and we puta = 1 inQn(x; ξ) in Eq. (4.6). This is permissible since the factor exp(−σn)
can be always amended to absorba (e.g. read Fisher’s paper[52]). UsingEqs. (4.6)–(4.8)
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the explicit form of the perimeter measure can be easily obtained using standard tables of
the Laplace transform. The final result is given by

C(ξ1, ξ2) = 2√
2ξ1 +

√
2ξ2

. (4.9)

This result should be applied to all edges of the ribbon graph and the final result should take
into account all automorphisms|AutΓ | of the underlying “normal” trivalent graphs. Taking
into account the assembly factor of 2−V(Γ ) the final result can be written as follows:

L(Zg(x))(ξ1, . . . , ξn) =
∑
G∈Γg,n

2−V(Γ )2E(Γ )

|Aut(G)|
∏

e∈E(G)

1√
2ξi(e) +

√
2ξj (e)

(4.10)

with indicesi andj referring toith andj th polygons sharing the same edge.
Since the LHS is given byEqs. (3.20) and (4.10)coincides with Kontsevich identity,

Eq. (1.35), provided that identificationλi =
√

2ξi is made. Since for trivalent graphs
|V| = 2/3|E |, we obtain

2−V(Γ )2E(Γ ) = 22g−2+n (4.11)

in accord with[87].

5. Piecewise linear homeomorphisms of the circle and KdV

In this section we would like to provide another interpretation to the results obtained in
previous sections. This interpretation is desirable since its aim is to explain to what extent
W–K model is universal from the point of view of dynamical systems theory. This is also de-
sirable for the purpose of connecting results of this paper with Witten–Dijkgraaf–Verlinde–
Verlinde (WDVV) equations and Frobenius manifolds[27,95]. To begin, we need to
introduce some information about the Thompson groups.

5.1. Some facts about the Thompson groups

The groupsF , T andV were introduced by Richard Thompson in 1965. Unfortunately,
his results had not been published. This, nevertheless, had not stopped line of research
initiated by Thompson as can be seen from the pedagogically written review article by
Cannon et al.[96]. Below, we provide some basic facts on Thompson groups using mainly
this reference. Additional sources will be used whenever they are needed to suit our needs.

Let F be the set of piecewise linear homeomorphisms from the closed unit interval
[0,1] to itself that are differentiable except at finitely many points. Letf ∈ F and let
0 = x0 < x1 · · · < xn = 1 be the set of points at whichf is not differentiable. This
partition determines intervals [xi−1, xi ] for i = 1, . . . , n which are called intervals of the
partition. A partition of [0,1] is calledstandard dyadicpartition if and only if the intervals
of partition are standard dyadic intervals.

Definition 5.1. A standard dyadic interval in [0,1] is an interval of the form [a/2n, a +
1/2n], wherea andn are non-negative integers witha ≤ 2n − 1.
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Fig. 15. The tree of standard dyadic intervals.

It is useful to associate a finite ordered rooted binary tree associated with standard dyadic
intervals as depicted inFig. 15. For xi−1 ≤ x ≤ xi, i = 1, . . . , n, the functionf can be
written as follows:

f (x) = aix + bi (5.1)

with ai being a power of 2 andbi being a dyadic rational number. It can be shown that
f−1 ∈ F andf maps the set of dyadic rational numbers bijectively to itself. Hence,F is
closed under the composition of functions and therefore is a subgroup of the group of all
homeomorphisms from [0,1] to [0,1]. This group isF group of Thompson.

Definition 5.2. When points 0 and 1 are identified to make a circleS1, then, the resulting
Thompson group is calledT group. Another Thompson group acting on the circle isV

group. Its definition is a bit technical[96] but, at “physical level” of rigor, the difference
betweenV andT groups is hardly noticeable. Therefore, following[97] we shall denote
bothV andT groups asPL2(S

1) and we shall keep in mind that both groups are subgroups
of the groupHomeo+ of piecewise orientation-preserving homeomorphisms of the circle.
The following proposition proven in[96] is very important.

Proposition 5.3. Letf ∈ F . Then there exists a standard dyadic partition0= x0 < x1 <

· · · < xn = 1 such that f is linear on every interval of the partition and0 = f (x0) <

f (x1) < · · · < f (xn) = 1 is a standard dyadic partition.

Evidently, using the proof of this proposition, the same statements can be made for
Thompson groupsT andV .

Remark 5.4. Using results of[42], the tree depicted inFig. 15 can be put in bijective
correspondence with the set of nonintersecting arcs depicted inFig. 3. In view ofProposition
5.3, different arc configurations correspond to different piecewise linear homeomorphisms
of the circle caused byPL2(S

1). This statement is going to be examined further below in
Section 5.3.

Remark 5.5. In view of Eq. (5.1)it can be shown[98] that, except for points 0= x0 <

x1 < · · · < xn = 1, the groupPL2(S
1) is isomorphic to groupPSL2(Z) which had been

discussed at length in our previous work[4].
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Fig. 16. The standard dyadic tessellation of the Poincaré disc with oriented marked edge being displayed.

5.2. Some facts about the Ptolemy group

In addition to isomorphism mentioned inRemark 5.5there is yet another important
isomorphism between the Thompson and the Ptolemy groups which we would like to
describe briefly in this subsection. Following Lochack and Schneps[99] define the standard
marked tessellation of the Poincaré disc as dyadic tessellation with marked (oriented) edge
from 0 to∞ as depicted inFig. 16.

The elementary moveα on the oriented edge of the dyadic tessellation changes its loca-
tion from one diagonal of the unique quadrilateral containing it to another one by turning it
counterclockwise as depicted inFig. 17. Such elementary move is of order 4 evidently. In

Fig. 17. The elementary move on the oriented edge.
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Fig. 18. An arrow-moving move.

addition to this move there is an arrow-moving moveβ depicted inFig. 18. This operation
moves an oriented edge to another edge without changing the tessellation itself. The min-
imal order of this operation is 3. This fact makes it formally similar to that coming from
Sarkovskii theorem, e.g. seeRemark 3.3, which forbids periodic orbits of period lesser than
3. Generatorsα andβ along with relations

α4 = 1, β3 = 1, (αβ)5 = 1, (5.2)

and commutator relations

[βαβ, α2βαβα2] = 1, [βαβ, α2βα2βαβα2β2α2] = 1 (5.3)

define the Ptolemy group[99]. Imbert had demonstrated[97] that this group is isomorphic
to PL2(S

1). The same result is obtained in[99] with the help of slightly different methods.

5.3. Circular homeomorphisms, combinatorics of the ribbon graphs and volumes of
hyperbolic polyhedra

Now we would like to add some important details toRemarks 5.4 and 5.5made above. In
view of Remark 5.5the standard dyadic tessellation of the Poincaré disc depicted inFig. 16
can be shown[97,98]to be in one-to-one correspondence with the Farey tessellation of the
unit discD discussed in detail in[4]. Such tessellation can be obtained from two “seeds”,
that is from two triangles with vertices located at 0= 1/0, 1= 1/1,∞ = 1/0 and 0,−1
and∞ respectively (e.g. see Fig. 16 and Section 2 of[4]) The duals to the tessellations
originating from these seeds are rooted binary trees whose roots are connected to each other
as depicted in Fig. 9 of[4]. The Farey tessellation is also known asideal triangulationof
D [98]. Ideal since the triangle which cover the hyperbolic plane/disc are ideal in the same
sense as Euclidean equilateral triangles covering the entire plane without gaps form an ideal
triangulation of the Euclidean plane. Since the Farey tessellation is multileveled (e.g.Fig. 16
depicts just two levels while Section 2 of[4] describes how to construct tessellations of any
level). If the level is finite (or at least periodic as depicted in Fig. 8 of[4]), then the duals
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of these tessellations are two rooted binary trees that are also finite. With the help of[42]
they can be put in bijective correspondence withtwo systems of arcs, e.g. those depicted
in Figs. 3 and 10, etc. needed for construction of the finite ribbon graph as discussed in
Section 4. Surely, the infinite level case of Farey tessellation is obtained as limiting case of
finite level case. The moves depicted inFigs. 17 and 18are in fact homeomorphisms of the
circle[98,100]belonging to the subgroupHomeo+. They affect the pattern of triangulation
of the unit disc and, hence, affect the binary trees. As demonstrated in[96], the group of
automorphisms of the reduced binary trees (meaning of the wordreducedis explained in
Section 2 of[96]) coincides with Thompson groupPL2(S

1). In the same reference the
analogue of movesα andβ for trees is obtained. Some additional physics can be associated
now with these mathematical facts. To this purpose, following[101] we notice that the
automorphisms of two binary trees associated with two arc systems are independent. Each of
these trees is in bijective correspondence with some triangulation of the convex polygon by
noncrossing diagonals[42]. Every automorphism of individual tree causes some change in
the triangulation pattern for given polygon. Since these changes are independent, following
Sleator et al.[102] one may ask about the minimal number of automorphic steps needed
to bring one triangulation pattern in exact correspondence with another. This problem is
of major importance in computer science. To make it also of importance to physics (and
also to evolutionary genetics[103], dynamics and thermodynamics of folding of RNA
[82,104], etc.) following[102] several more steps are required. First, by gluing these two
polygons to each other we form a triangulated sphereS2. Second, we project this sphere
stereographically into the complex plane so that pattern of triangulations onS2 is transferred
to the Euclidean plane. Next, we associate this plane with boundary of the upper half space
model forH3. The triangular pattern on such plane is sufficient for reconstruction of the
hyperbolic polyhedra according to Thurston[16]. A pedagogical account of how it can be
actually done can be found in[105]. Finally, if needed, such polyhedra can be mapped into
the hyperbolic ball model ofH3 so that the vertices of these hyperbolic polyhedra are located
at the sphere at infinityS2∞. Each triangulation pattern on the sphereS2∞ thus associated with
some hyperbolic polyhedron of finite volumeVH which is determined by this triangulation
pattern. The physics can be now injected into this picture by introducing some Boltzmann
factor exp(−βVH) so that different volumes are related to different triangulations. The larger
the volume is for a given “temperature”β, the more stable triangulation pattern becomes.
Incidentally, reference[102] is devoted to finding hyperbolic polyhedra with large volumes.

Remark 5.6. Very recently statistical mechanics of various physical systems with Boltz-
mann factor containing volume (including hyperbolic volume) had been considered by
Atiyah and Sutcliffe[106]. Actually, these authors had considered instead of volume its
logarithm.

5.4. Universal Teichmüller space, KdV and Frobenius manifolds

Connections between the Dyck paths, Virasoro characters and exactly solvable lattice
models had been known for some time[107]. Moreover, since combinatorics of the Dyck
paths is directly associated with that for the Catalan numbers, such connections are actually
not totally unexpected since there are about 150 interpretations of the Catalan numbers
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[42]. This, by the way, means that potentially there are much more applications of the W–K
model than we had mentioned so far. It is not the purpose of this subsection to provide
the list of such applications. Instead, we are interested in intrinsic features of W–K model
which are encoded by the Thompson (or the Ptolemy) group. Following Penner[98,100],
theuniversal Teichmüller spaceTessis defined by

Tess= Homeo+
Möb

, (5.4)

whereMöb is justPSL(2, R). If Tess′ is a set of all tessellations ofD, thenTess= Tess′/Möb
as well, as Penner shows. In Section 7 of[3] we had introduced and discussed the universal
Teichmüller spaceT (1) as defined by Bers. More explicitly, such space is defined by

T (1) = QS

PSL
(2, R) (5.5)

with QSbeing a set of all quasisymmetric deformations of the circleS1∞ (or real lineR).
We shall discuss these deformations in some detail below. In the meantime we notice that
“physical” definition of the Teichmüller spaceT is given by

T = Diff+
PSL(2, R)

, (5.6)

whereG = Diff+ denote set of all orientation preserving diffeomorphisms ofS1∞. Since
G is proper subgroup ofQS[98], it is clear thatT is embedded intoT (1). In [98] Penner
argues thatQSis subset ofHomeo+. This leads to the following inclusions:

T ⊂ T (1) ⊂ Tess. (5.7)

This result is very nontrivial since it makes sense out of Sarkovskii theorem (Remark 3.3
and Section 5.2) in the present context. It also allows to use Nag and Verjovsky[108]
arguments (summarized in Section 7 of[3]) for use ofQSdeformations ofS1∞ in order to
obtain the Virasoro algebra. It is well documented fact that the method of coadjoint orbits
[109] directly connects the Virasoro algebra with KdV equation. The connection between
QSdeformations and KdV can be established directly without method of coadjoint orbits.
For this purpose we need to use some classical results of Ahlfors[65].

Letw = f (z) be a homeomorphism of the complexz-plane (orS2). Then

dw = fz dz+ fz̄ dz̄. (5.8)

The complex dilatation factorµ giving rise to the Beltrami equation is defined now as

fz̄ = µfz, (5.9)

and the associated modulus of this dilatation factor is defined bydf = |µ| ≤ 1. The
mapping is considered to beK-quasiconformalif there is a non-negative constantK such
thatDf ≤ K, whereDf = (1+ df )/(1− df ). Accordingly, the mapping is conformal
if Df = 1. Suppose now thatf maps the upper Poincaré half plane to itself (which is,
of course, equivalent to the mapping ofD to itself). The mapping is quasisymmetric, i.e.
f ∈ QSif for all pointsx, x − t andx + t on real lineR the followingM condition

M−1 ≤ f (x + t)− f (x)
f (x)− f (x − t) ≤ M (5.10)
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is satisfied withM being some non-negative constant. In Chapter 6 of[65] Ahlfors proves
that the function which isschlichtand has a quasiconformal extension to the upper half
plane must obey the following Fuchsian-type equation known already to Poincaré[110]

y′′ + 1
2φy = 0. (5.11)

The mapping functionf = y1/y2, wherey1 andy2 are being two independent solutions of
Eq. (5.11)normalized by

y′1y2 − y′2y1 = 1. (5.12)

The functionφ is determined by equation [f ] = φ with [f ] being the Schwarzian derivative
of f . Recall[111] that the function is considered to be schlicht (or simple) at some point
of complex plane if its first derivative is nonzero at this point.

Lazutkin and Pankratova[112] studiedEq. (5.11)from the point of view of the circle
maps. They used a variant ofEq. (5.1)given by

F(ξ + 2π) = F(ξ)+ 2π, ξ ∈ R (5.13)

to study the transformational properties ofEq. (5.11). In particular, change of variables

x = F(ξ) and y(F (ξ) = Y (ξ)
√
F ′(ξ) (5.14)

leavesEq. (5.11)in the same formY ′′ + 1/2ΦY = 0 with potentialΦ given by

Φ(ξ) = φ(F (ξ))[F ′(ξ)]2 + [F(ξ)] (5.15)

with [F(ξ)], again, being the Schwarzian derivative ofF . Eq. (5.15)actually determines
transformational properties of the Schwarzian derivative. In Ahlfors notations[65] this
equation can be equivalently rewritten as equation for transformation of the Schwarzian
derivative:

[f ◦ F ] = ([f ] ◦ F ])(F ′)2 + [F ]. (5.16)

Evidently, this equation holds irrespective to the explicit form ofEq. (5.13). Using this
observation it is of interest to consider transformation of the typeF(ξ) = ξ + δϕ(ξ) with
δ being small parameter andϕ(ξ) some function which makesEq. (5.13)to hold. Use of
this type of function inEq. (5.16)produces

Φ(ξ + δϕ(ξ)) = φ(ξ)+ δ(T̂ ϕ)(ξ)+O(δ2) (5.17)

with

(T̂ ϕ)(ξ) = φ(ξ)ϕ′(ξ)+ 1
2ϕ

′′′(ξ)+ φ′(ξ)ϕ(ξ). (5.18)

The KdV equation can be obtained now in a simple minded way. To this purpose, sinceϕ

is arbitrary, we chooseϕ = φ. Next, we make bothϕ andφ to depend upon the parameter
δ, that is we writeφ = φ(ξ, δ). Next, we assume that the parameterδ plays role of “time”
t and, finally, we write

lim
t→0

Φ − φ
t

= ∂φ

∂t
. (5.19)
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This then produces our final result:

∂φ

∂t
= 3φφ′ + 1

2
φ′′′. (5.20)

Eq. (5.20)coincides with Eq. (2.2) of Segal[113] and, hence, can be called KdV equation.
We provided details of derivation in order to emphasize the universality of this equation in
problems which involve circular maps or maps ofD. Since KdV is effectively dual to the Vi-
rasoro algebra surely it also can be obtained via Nag–Verjovsky approach to construction of
the Virasoro algebra and the Kirillov–Kostant two-form by using the universal Teichmüller
spaceT (1) [108]. Summary of Nag–Verjovsky results can be found in our earlier work
[3]. These results were extended by Penner[98] whose Theorem 5.5 essentially assures the
existence of the Kirillov–Kostant two form which is invariant under transformation taken
from the Ptolemy group. Independent and deep studies of the same problem can be found
also in earlier work by Ghys and Sergiescu[114]. Higher order KdV can be easily obtained
by sequential use of̂T operator as can be seen from[115].

Eq. (5.11)contains actually much more information than we had discussed thus far as
was shown by Dubrovin, e.g. see Example C.1 of[95]. From this example (and preceding
discussion) it follows that variety of equations of WDVV type are obtainable as special
cases ofEq. (5.11). Moreover, the self-dual Yang–Mills and Einstein equations also follow
from Eq. (5.11) [95,116]. Geometrically, solutions of WDVV equations representFrobe-
nius manifolds. Thy are named after Frobenius who was the first to discover them in 1882
[117]. Incidentally, the self-dual Einstein equations had been studied already in 1881 by
Halphen[118]and rediscovered by Atiyah and Hitchin[116]. In recent paper by van de Leur
and Martini[119] KP representation theory and the related Sato infinite Grassmannian are
used to construct solutions of the WDVV equations and, hence, the Frobenius manifolds. In
addition, Dubrovin and Zhang[120] had recently demonstrated that, at least for Frobenius
manifolds of genus zero and one the Virasoro constraints hold true. That is WDVV equations
can be reduced to that of KdV type. This result is in complete accord with arguments pro-
vided earlier in this section supporting the claim about universality of KdV type equations.
This universality has its origin in the properties of the universal Teichmüller and moduli
space. This universality has been studied group-theoretically by Lochack and Schneps[99]
who studied action of the Grothendieck–Teichmüller groupĜT̂ on Ptolemy–Teichmüller
groupoid. Recent lecture notes by Bakalov and Kirillov[121] contain some additional
helpful information. The authors also discuss connections between the Catalan numbers,
modular functor, modular tensor category, Teichmüller tower, Knizhnick–Zamolodchikov
equations, etc. and contain many references on latest important related works. The latest
paper by Nakamura and Schneps[122] should, perhaps, be added to the list references. It
is our hope that mentioning of all these beautiful mathematical results in this paper may
encourage some applications of these results in areas other than mathematics and theoretical
particle physics.

Note added in proof. While this paper was under refereeing, several important recent
publications came to our attention. In particular, reference[123] provides a very efficient
introduction into Schubert polynomials, Shubert varieties and related topics. References
[124,125]written and edited by Rota provide an indispensable supplement to book by Stan-
ley [42]. These references allow us to keep things in historical perspective and, hopefully,
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should serve as an inspiration for many additional potential applications. In recent paper
by Sözen and Bonahon[126] it is shown that the Weil–Petersson symplectic formωw–p,
e.g. seeEq. (1.4), coincides with Thurston intersection formτ for geodesic laminations
(more details on this subject can be found from yet unpublished book by Francis Bona-
hon “Closed Curves on Surfaces” available on-line). This allows to establish connections
between foliations/laminations and noncommutative geometry as actually had been demon-
strated by Connes[127] some time ago. In addition to monograph[27] by Manin, recently
Manin and Zograf had obtained explicit asymptotics for Weil–Petersson volumes of the
moduli spaces of punctured Riemann surfaces in the limit of fixed genus and number of
punctures grooving to infinity[128] while Grushevsky have obtained the asymptotics for
the fixed number of punctures with genus grooving to infinity[129]. In [130] Guha made
some progress in showing new connections between the diffeomorphisms of the circle and
the exactly integrable systems of the KdV type by connecting them with differential Galois
theory. Finally, direct links between the results of our[4] and those discussed in this paper
could be also developed with the help of random polynomials[131,132].
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