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Abstract

In previous publications [J. Geom. Phys. 38 (2001) 81 and references therein] the partition
function for 2+ 1 gravity was constructed for the fixed genus Riemann surface. With the help
of this function the dynamical transition from pseudo-Anosov to periodic (Seifert-fibered) regime
was studied. In this paper the periodic regime is studied in some detail in order to recover major
results of Kontsevich [Commun. Math. Phys. 147 (1992) 1] inspired by earlier work of Witten
on topological two-dimensional quantum gravity. To achieve this goal some results from enumer-
ative combinatorics have been used. The logical developments are extensively illustrated using
geometrically convincing figures. This feature is helpful for development of some nontraditional
applications (mentioned through the entire text) of obtained results to fields other than theoretical
particle physics. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction
1.1. Motivation
It may not be exaggeration to say that dynamics @f 2gravity is just an interpretation

of Nielsen—Thurston theory of surface homeomorphisms in terms of concepts known in
physics[1-4]. Apparently, the reverse task of enriching mathematics with concepts known

E-mail addressstring@clemson.edu (A. Kholodenko).

0393-0440/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.
PIl: S0393-0440(02)00003-7



46 A. Kholodenko / Journal of Geometry and Physics 43 (2002) 45-91

from physics had been accomplished by Wittgh His physical intuition had revolution-
ized combinatorial methods of algebraic geometry related to intersection theory on moduli
space of curve§—8]. In his famous pape€f9] Kontsevich had provided needed mathe-
matical justification to Witten’s work. Since in both papers the initial object of study is
two-dimensional quantum gravity it is only natural to expect that the results of Witten and
Kontsevich can be reobtained from more general 2gravity model. The purpose of this
paper is to demonstrate that this is indeed possible.

It should be noted that the results of Witten and Kontsevich (W-K) rely heavily on the fact
(proven by Kontsevicli9]) that the partition function of two-dimensional gravity happens
to bet function of the Korteweg—de Vries (KdV) hierarchy which is just a special case
of more general Kadomtsev—Petviashvili (KP) hierarchy of nonlinear exactly integrable
partial differential equations. Attempts to connect string theory with exactly integrable
systems had been made earlier. Good summary of earlier efforts can be fo[it].in
Recently, KP equations had been discussed in relation to dynamics- af @ravity[11].
The content of11] apparently has no connections with results of W—K. This does not
exclude the possibility that such connection might exist and requires further study. In the
present work we establish such connection (reduction) by reobtaining W—K results from
formalism developed earlier for-2 1 gravity[1,2,34] This formalism is based on some
properties of Riemann surfaces. From algebraic geometry it is known that every Riemann
surfaceS can be described in terms of the corresponding complex algebraic Cyhza3
so that one can use interchangeably algebro-geometric and complex analytic language to
discuss the same object, the Riemann surface. This, unfortunately, is not an easy task as
was noticed by Looijengl]. The existing difference in terminology is especially apparent
when one is interested in the issue of compactification of the moduli space of Riemann
surfaces (e.g. séeg. (1.1)and related discussion)

Moduli spacesM, are connected with Teichmuller spacgsof Riemann surfaces of
genusg > 2 in such a way thaim, = T,/I" with I" being the mapping class group
of S. Both M, and7, have been discussed extensively in our earlier published papers
on 2+ 1 gravity [1-4]. The concept of moduli had been initially proposed by Riemann
who stated that isomorphism classes of closed Riemann surfaces of genu2 are
parameterized byg— 3 complex parameters (or by 6- 6 real parameters). The space of
allowed values of these parameters is effectively the moduli spagceMore accurately,
such moduli space is calledarse moduli spacét is complex analytic space of dimension
3¢ — 3 but not a complex manifold. Presence of singularities (to be discussed below)
prevents this manifold from becoming a complex manif@d 3]. One way of describing
both M, and 7, is through introduction of marking o (accordingly ofC). Marking
of S can be made by introducing soméoundary components such that each of them is
conformally equivalent to a punctured didkt]. Accordingly, for algebraic curves we select
n distinguishedsmooth) points on the curve. Smooth means that the points are not located
atthe possible singularities 6f According to Deligne and Mumford 5] such singularities
are regular double points which, in the case of traditional visualization of Riemann surfaces
as closed surfaces wighholes, are associated with formation of nodes as depicteid i

The compactificatiom?lg,,, of moduli space is achieved by inclusion intd, , domains
in parameter space associated with Riemann surfaces with nodes. In the language of al-
gebraic geometry complex curves associated with such surfaces arestalikriMarked



A. Kholodenko / Journal of Geometry and Physics 43 (2002) 45-91 47

Fig. 1. Various types of degeneration of the Riemann surfaces.

curves possess only finitely many automorphisms. It is kn@jthat no stable curve can
have more than@— 3 nodes. This fact may be easily understood if we recall that each
Riemann surface admits pants decomposifffjrso that 3 — 3 nodes can be associated
with degenerate geodesics whose lengths are squeezed to zero. For RiemannSsurface
instead of (or in addition to) marked points one can think about families of closed curves
(lamination set$4]) and their intersections. By properly defining intersection number(s)
one can measure the nontriviality of such g6isIn algebraic geometry such numbers are
associated with conomology classes known alda@®logical classes; in Hz(j\?lg,n, Q).

These numbers should not be confused gitlometricalintersection numbers introduced

by Thurston[16,17] Roughly speaking such numbemeasures the number of intersec-
tions between a selected simple nontrivial closed curea S and measured foliatioft:

i = i(F, ). This observation allows one to introduce equivalence relations between mea-
sured foliations. In particular, foliation; and ., areprojectivelyequivalent if there is
numberi € Ry such that (Fi, o) = Ai(F2, ). Following Thurstor{17] and other$18],

we define the space of projective laminatidA£(S) as space of equivalence classes of
measured foliations. Such defined space forrhswndaryof the Teichmdller spacg, .

The compactification of the Teichmiiller spafeésS) is defined now as

T(S) =T(S)UPLS). (1.1)

The setT (S) is closed ball of real dimensiong6- 6 + 2n whose boundary is identified

with PL(S). Since the moduli space is the quotient/ofS) by the mapping class group

I', is clear that such defined compactification of the Teichmuller space leads accordingly
to the compactification of the moduli space. Such compactification is apparently different
from that of Deligne—Mumford. The difference has some physical meaning. Indeed, in the
traditional, algebro-geometric case, no dynamics is involved while in the Thurston’s case the
dynamics (that is “time evolution”) is associated with dynamically formed three-manifolds,
e.g. see Chapters 8 and 9 of Thurston’s lecture ndig}s These dynamical features are
explained in physical terms and illustrated in our recently published paper on statistical
mechanics of 2- 1 gravity[4].
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Since in two-dimensional quantum gravity there is no time evolution, naturally, there is
no dynamical observables and theory is essentially topological. Whiemad suggested
to study the topological averages of the type

(Thy =+ Thy ) g = / wi‘l---w,’f" (1.2)

g.n

provided that 3 — 3+n = ) _'_; k;. To understand the meaning of such an average it is
instructive to consider the first nontrivial exampge:= 1, n» = 1. In this case we obtain,

(= [_ ¥ (1.3)
Maa
Witten had demonstrated that )1 = 1/24. This result had been actually obtained earlier
by Wolpert[19] who noticed that

1
= 1.4
(1)1 52 fMlYlwW—p, (1.4)

wherewy— is familiar Weil-Petersson Kahlgt, 1) form which plays very important role
in both the theory of Teichmiller spaci9] and in string theory21]. The dot above the
equality sign has the following meaning. The inte%@{ll ww—p had been independently

calculated by Wolpef22] and Penngi23] and is known to be equal tt?/6 so that the RHS

of Eqg. (1.4)is equal to ¥12. The same result was obtained by Wittghwho argues that it
should be additionally divided by 2 because “the generic elliptic curve has two symmetries”.
Thus, evidently, computation of “tautological averagdsy, (1.2) is effectively equivalent

(up to numerical prefactors) to calculation of the Weil-Petersson vquméSggt. Zograf

[24] had calculated such volumes for= 3 punctured spheres. Based on these results, Ma-
tone[25] had developed and solved nonpertubatively two-dimensional Liouvillian gravity.
Some of his results had been used and extended in the work by KaufmafPé}.alhese
results had been further streamlined in recently published monograph by &hin

1.2. From Chern classes to Grassmannians

To make an additional connection with physics, we would like to reanalyze just obtained
results from the point of view of differential geometry of complex manif¢fds28] In this
regard, a closeihtegral (1, 1) form w on a complex manifold/ determines the equivalence
class of a line bundle. Recall[21] that a line bundle. on manifoldM is an assignment
of one-dimensional complerectorspacet, to each point € M. Sections ok, are some
functionsf, (z € By) assigning an element af to each point. Vector spaces at different
points should fit together and this leads naturally to the fiber bundle constructions made of
transition functionsp,, between different coordinate chails. A metric onx. is a set of

positive functionsg, such thagy = |pa, |2gﬂ. The covariant derivative is defined now as

3 3
ija={7+—_|nga}fa. (1.5)
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The bundlex is holomorphicif in addition

Vifo=—fa- 1.6
ifa = azj 7 (1.6)
With the help of such defined covariant derivative the curvature tefisufr is obtained
in a standard waj28] with the following result:

F=——Ing,. 1.7)
z
Finally, it can be showf21,28]that
w=—Fdz Adz, (1.8)
2

and that, actually, such defineti 1) form coincides with the first Chern class foem().
In our caseM = M, , and the line bundle is actually a cotangent burftiéM, ,) made
of quadratic differentials [Wolpert, positive]. Wolpg29,30] had demonstrated that

1

271
Substituting this result int&q. (1.4)we obtain,

()1 = / c1p(A), (1.10)
Mai1

wherecy, (1) = c1(1)/2. In such notations this result coincides with Eq. (1.7) of Witten’s
papel5] (ford = 1). The reason of introducing the factor of 1/2 can be explained as follows.
According to Wellg28, Chapter 6]the traditional construction of Hodge line bundles for
manifolds requires that

/a) = integer= c. (1.11)

Moreover, ifc is an integer, it is actually equal to the Euler characteristic of the manifold.
In our case,/\?lm is an orbifold and for the orbifolds the Euler number can be rational
number according to Thurstgh6]. Wells explains how to construct the Hodge bundle for
any Kéhlerian manifold/orbifold. To this purpose, if the constairt Eq. (1.11)is not an
integer, it is sufficient to rescale the forn: 2 = ¢ 1w, so that the rescaled form is the
Hodge form. Since the moduli spaa,‘é(g,n is an orbifold,Eq. (1.10)is acceptable and,
hence, with such remarks, coincides with Eq. (1.7) of Witten's papeti(ferl) [5].

Obtained results possess additional very important physical information allowing us to
make direct and simple connections with Grassmannians and, hence, with exactly integrable
systems, using arguments different from that of Wiftglnand Kontsevich9].

Let GC(d, n) be complex Grassmannian manifold. It is known that

U +n)

C _
GoW.m) = e (1.12)
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whereU (n) belongs to the unitary Lie group afx n matrices. Following31,32]consider
now theclassifyingspaceBU(n) defined by
BUW) = lim 2@ "
n—ooU(d)U (n)
The namelassifyingcomes from the following observation. Suppose there is a frfapm
a base spac¥ to BU(d), i.e. f: M — BU(d). Construction of such a map for the case of
orbifolds has been developed by Baj88] and, in particular, folM, , by Wolpert[29].
The n-vector complex bundlé over the base spadd can be expressed as a pullback of
the standardvector bundle overBU(d). That ish = f*(§). Theith Chern clasg;} of
the vector bundlé. can then be calculated simply by the pullbatkc;) € H% (M, R) of
the element; in the Zth cohomology group oBU(d). G€(d, n) can be embedded in the
complex projective space. This can be achieved forraagd the limiting case — oo is
known asSato Grassmanniaim the theory of KP equation84]. We would like now to
describe such an embedding in some detail.

Recall that the complex projective spa@eis defined a®” := (C*t1 — {0})/ ~ with
equivalence relation- defined as follows. If a poinP € P" is given by amm + 1 tuple
(z(0), ..., z(n)), then anothefn +1) tuple(z’(0), ..., 7’ (n)) defineghe samgoint P € P"
if there is a nonzero numbersuch that (i) = ¢Z(i), Vi, i = 0-n. The system of standard
coordinategU;, ¢;) enables us to define a manifold structureRin

Ui ={z0),...,zn)|z@) #0}, i=1,...,n,

(1.13)

and

(1.14)

0 Ui — C" = (@ 2i—1 z23(i+1) @)

z@) 7z 7 oz T z()

With the help of such map; can be identified with the affine spaCé and the spaceé” can
be made from different coordinate patcligswith the help of transition functiong,, as
discussed before. knear spaceC in P" is defined as the set of poins= (z(0), .. ., z(n))
of P" whose coordinates satisfy a system of linear equations

> bejz(j) = 0. (1.15)
j=0

a=1,...,(n—d). The space isd-dimensional ifn — d) x (n+ 1) matrix of coefficients
[baj] has a nonzer@n — d) x (n — d) minor. In this case there aré+ 1 pointsP; =
(zi(0),...,zi(n)) In L (i = 0,...,d) which spanl. Naturally, £ is a line ifd = 1, a
plane ifd = 2 and a hyperplane if > 2. We shall call these planes @planes following
[35]. Thed-planes inP" can be represented by the points in the projective spdoshose
dimensiony is given by

_ (n+ 1! B
T d+Dln—d)!

To this purpose, let us fix @-plane inP" and pickd + 1 pointsP; = (z;(0), ..., z;(n))
which span£. Using these points let us fordd + 1) x (n + 1) matrix [p;(j)] with

(1.16)
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0<i<dandO0< j < n. Letjg,..., js be a sequence of integers with<0 jg < n

and letp(jo, ..., ja) denote the determinant & + 1) x (d + 1) matrix [p; (jg)] with
i,=0,...,d. There will beN + 1 determinants of such type and at least one of them is
nonzero by requirements of linear algebra. Hence, in vietpf(1.14) we conclude that
we can use these determinants to determine a point in the complex projectiv®8pate
coordinates of this point are call@iicker coordinatesf £ in PV and such an embedding
of the complex Grassmannian manifold ¢splanes inP" space) into complex projective
spaceP” is calledPliicker embeddingNot every point inP" arises fromd-plane inP".

Plicker coordinateg(jo, . . ., js) obey the following set of (Plicker) equations
d+1 .
> =1 po. .- ja—1kp)plko, ... k. ... kat1) =0. (1.17)
j=0

Here jo. . ... ja—1 andko, ..., kg4+1 are sequences of integers with<0 jg, k¢ < n with

\/kj meaning that the integér, has been removed from the sequence.

As itis shown by Miwa et a[34] Plucker coordinates represent the location fafnction
of the KP hierarchy inside the Grassmannian while Plicker equations are in one-to-one
correspondence with the Hirota bilinear equations. Hence, the connection between the
averages given biq. (1.2)and KP (or, more exactly, KdV) hierarchy naturally follows.
The determinants, which are pointsR, have probabilistic meaning which is discussed
below. To this purpose we have to introduce some additional concepts.

1.3. From Grassmannians to Schubert varieties

Consider a sequence of subspaces (cellular decompositiodyi®.A1 C --- C A4 Of
a fixed space, e.", each properly contained in the next, whose dimensionsAdiea «;,
provided that 0< a9 < a1 < -+ < ag < n. Such construction is callefiag. Let
now £2(Ao, ..., Aq) be the subset of G€(d, n) consisting of alld-planes satisfying
dm(LNA;))>ifori =0,...,d. Thus, ifdimA; =i Vi, thenf2(Ao, ..., A;) is made of
a singled-plane, while if dimA; = n — d +i Vi, thenf2(Ao, ..., Ag) = G¢(d, n).

Definition 1.1. £2(Ao, ..., Ay) is calledSchubert varietgorresponding to the flago C
A1 C --- C Ay4. 2(Ao, ..., Ay) defines a homology (actually, cellular homolo®R])
class in the homology rin@,. (G (d, n); Z).

Definition 1.2. Homology class inH,(G¢(d, n); Z) is called Schubert cycleBecause
the homology class depends only on the integers= dim A;, it is appropriate to write
(Ao, ..., Aq) = 2(ag, ...,aq),where0<ag <a1 < --- <ag <n.

It can be showfiL 2] that the product of any two Schubert cycles can be uniquely expressed
as alinear combination of other Schubert cycles. This observation is central for development
of Schubert calculufl2,35,36]

Remark 1.3. Gepnef37] had demonstrated that all results of rational conformal field the-
ories can be actually obtained from physically reformulated Schubert calculus. Additional
physical refinements of these ideas can be found in the work by Wa8&n
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H.(GC(d, n); Z) is generated by thepecialSchubert cycles given by
o(i)=R2(,n—-d+1,...,n) (1.18)

fori =0,1,...,n —d. These results allow to proJ&2,35,36]the following theorem of
central importance for the whole development presented in the rest of this paper.

Theorem 1.4. For all sequences of integes< ag < a1 < -+ < ag < n (which we
denote as) the following determinantdlGiambelli's-likg formula holds in the homology
ring H.(GC(d, n); Z):

R@=lo@+j—-il, 0=<i,j<n—d (1.19)
with |o (a; + j — i)| being a determinant made of special cycles

Remark 1.5. The name Giambellicomes from the fact that structurally the same expression
exists for the Schur polynomials which was discovered by Giambeli9—42] The Schur
polynomials are characters of the general linear group on symmetrized complex linear vector
spacek4 [39-42] In the light of results presented earlier we can associate the determinant
p(jo, - - -, ja) with that for special Schubert cycldsgy. (1.19) so that the Schur polynomials

aret functions of KP hierarchy. The formal correspondence between the Schur polynomials
andEg. (1.19)s not coincidental. It can be provgtR] that, actually, there is anisomorphism

© betweensS, and$2(a).

Remark 1.6. The topological meaning dfqg. (1.19)had been clarified by Porteo{#3]
and also by Horrock$44] and, later, by Carre]45]. All these results can be actually
deduced directly from much earlier fundamental papers by CiEhand Ehresmann
[47].

We would like to describe briefly these results since they are essential for correct physical
understanding of the meaning of intersection numbers. To this purpose let us observe that
for k-cycle A andn — k cycle B on ann-dimensional manifold/ the Poincaré dualsof
these cycles are closed— k andk differential formsg and respectively so that the
intersection numbét(A - B) of these cycles in homology is equal to the wedge product of
these two forms in cohomolod{ 2], i.e.

#ULB)z/mwAw. (1.20)
M

This definition can be extended to describe the intersection of subvarietesi W of a
complex manifoldV and it is possible to prove that Schubert calculus is just a special case
of such more general algebra known in the literatur€hew algebrg8] (also as Chow
ring [41]). Next, we need a notion of a divisor.

If the manifoldM can be decomposed as

M=ViU---UV,, (1.21)

then one introduces the following definition.
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Definition 1.7. Divisor D on M is locally finite formal linear combination
D — ZaiVi (1.22)

of irreducible analytic hypersurfacés of M.

Definitions of “local finiteness” and “irreducibility” are given [d2, p. 130] The con-
stantsa; are normally some integers. FGI°(d, n) Schubert cycles provide the desired
decomposition of the Grassmannidr2]. The following theorem is of central importance
[12].

Theorem 1.8. The Chernclass; (1), Eq. (1.9) of the line bundle. represents the Poincaré
dual of the fundamental homology cycle carried by the divisor D, i.e.

i
o MFm/fzza,-/Viw (1.23)

for every real close@n — 2 form .

Consider now some implications of this theorem. First, in the cad¢ is compact
Riemann surface, a divisor a¥ is just a finite sum

D= np (1.24)

of points p; € M with multiplicities n;. CombiningEgs. (1.23) and (1.24)roduces the
Poincaré—Hopf index theorem

i
o /M F= Z = X (M). (1.25)

This theorem played central role in our earlier works ef2gravity[1,2]. This observation
clarifies both the meaning of numbers and pointsp;: for vector (or line) fields these
points are associated with singularities of the field. These singularities had been interpreted
as masses.

Remark 1.9. Generalization of this result to higher dimensions had been developed by
Chern and Weil (CW). The up-to-date exposition and generalization of their results can be
found in[48] and, in principle, provides an opportunity to describe 3 gravity in a way
similar to that developed for-2 1-dimensional case. Such approach to gravity is very close
in spirit to that originally suggested by Reg@®].

We need this observation in the present context as well for the following reasons. By
definition, a subseV of an open seU € C" is ananalytic varietyif for any p € U
there exists a neighborhodd’ of p in U such thatV N U’ is common zero locusf a
finite collection of holomorphic function§f;} on U’. In particular,V is called an ana-
lytic hypersurface if locallyV is zero locus of a single nonzero holomorphic functign
i.,e. V = {f(z) = 0} in the neighborhood of G= V. Accordingly, for decomposition,
Eq. (1.21) V; = {fi(z) = 0} with V; irreducible at 0. All these facts lead to the following
definition.

Definition 1.10. Analgebraicvariety C P" istheimage ifP” of zero locus of a collection
of homogenous polynomials defined@it!,i.e.V = (Fi(zo, ..., z,) = 0).
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For the line bundler on M it is possible to associate sections with if M can be
embedded int®” (and, in our case, it can be embedded since we had mentioned already
thath = f*(§) withé € BU(n)). Suppose now that for some poirite M of n-dimensional
complex manifoldn sections are linearly dependent. Then, according to CW tjé8r§0],
this fact can be written as

fal/\"'/\fo:m =0. (1.26)

This equation is multidimensional analogue of the Poincaré condition (e.g. read Remark
4.2 of[2]) for the singularities of the line/vector fields on surfaces. dégeneracy sét set

of all pointsz; for which condition given byeq. (1.26)holds. In the most general case itis

m — 1-dimensional submanifold of M. Consider now a cycke on M of dimensiorr lesser

than that ofD. Let such a cycle medb transversely at the poinf € D then, f («) will

meet some Schubert cycfe(a) also transversely at the poirfi(z*) of the Grassmannian

so that the intersection number ¢fa) with 22(a) at f(z}) will be the same as that for

« meetingD on M. Taking into accounEgs. (1.20) and (1.23)nd alsoTheorem 1.8we
conclude that, (1) («) = #(a, D). With little additional work it can be showji?2] that

2(a) = [Caj4j-iM)], 0=i,j=n—d (1.27)

to be compared witkq. (1.19) This result was obtained by Portedd8] and is known in
the literature as Porteous formilie2,41]

1.4. From Schubert varieties to directed random walks

Porteous formula can be seen as a special case of much more comprehensive result of Weil
(and developed by Chern) known\a&il homomorphisnin view of this homomorphism,
the result given b¥g. (1.27)can be reinterpreted as Schur polynomial (e.g. read discussion
following Eq. (1.19) and, hence, as function of KP hierarchy. Schur polynomialg,
originate from the knowi40] identity for indeterminatesx; }

()Cl+"'+xm)n = Zf)LS)L()C]_,...,Xm), (128)
An

where use of the notationt n is meant to say that is partition ofn. Partitions are best
represented by the Young tableaux. Accordingly, the fagtatenotes a number of standard
tableaux of a given shape

Eq. (1.28)can be rewritten in a slightly different form as follows:

M!
(.x1+"'+xn)M — Z —xlml...x";”” (129)

y milmo! - -m,!

provided thatM = mj + - - - + m,. This observation allows us to write Schur polynomial
S, in the form

Sy(x1, ..., xp) = Z Ky mxy oo xp (1.30)

m=(ma,...,ny)

with K, ,, being some coefficients (Kostka numbe#s)].
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Fig. 2. A typical directed random walk.

Eqg. (1.30)can be given probabilistic meaning in terms of the directed random walks.
Indeed, following42,51] consider planar lattice. On this lattice consider a directed path
from (a, 1) to (b, N). The information about this path can be encoded into mukisef(P)
of y-coordinates of the horizontal steps®f Define

wP)= [[ = (1.31)
i=Hory (P)
To facilitate reader’'s understanding, we illustrate these ideakign2 In this figure
Hor, (P) = {1, 3, 3, 6} and, accordinglyw(P) = xix2x}. Next, we need to extend this re-
sult to an assembly of directed random walks (“vicious” random walkers in terminology of
Fisher[52]). Thatis we need to consider the products of the typBy) - - - w(Py) = W(P).
Finally, the generating function for an assembly of such vicious walkers is given by

hp—a(x1, ..., x5) =Y _ W(P), (1.32)
p

whereW (P) is made of monomials of the typd'*x5'2 - - . x;" provided thainq + - - - +
my = b — a. The following theorem is proven jd2,51]

Theorem 1.11. Giveninteger < a; < --- < ar and0 < by < --- < by, let M; ; be the
k x k matrix

Mi,j == hb_/'—a,' (-x19 MR ] -xN)’ (1.33)
then,
detM =Y " W(P), (1.34)
P

where the sumis taken over all sequend®s. . ., P;) = P of nonintersecting lattice paths
Pi:(ai, 1) — (bi, N).

Corollary 1.12. Put nowg; =i andb; = A; + j in Eq. (1.33)provided thatl <i, j <k
with A being partition of N with k parts themletM = S, (x1, ..., xy).
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Theorem 1.1Dprovides desired connection between the vicious random walkers and the
7 function of KP hierarchy.

1.5. Organization of the rest of this paper

In Section 2we provide some facts from the theory of random vicious walkers using
results of Fishef52], Huse and Fishgb3] and Forrestef54]. We argue that these results
can be obtained also with the help of the Bethe ansatz method applied to one-dimensional
nonideal Bose gas. Such observation is helpful for developing connections between the
Yang—Baxter equation, symmetric functions and Schubert polynomials. The obtained Bethe
ansatz wave function is reinterpreted in terms of the Gaussian unitary ensemble of ran-
dom matrices. Using some results for random matrices summarized by [&&htand
more recent results by Tracy and Widd66] (and Forrestef57]) we discuss relations
between the Kontsevich matrix Airy integral and that coming from the Gaussian unitary
ensemble. We argue that both integrals ariinctions of KP hierarchy. Moreover, we
demonstrate that these integrals are actualfynctions for KdV hierarchy of equations
(that is they are only a special case of KP hierarchy) and, hence, both can be used as
solutions of the W—K model. The arguments ®dction 2are too general. They do not
contain explicit reference to2 1 gravity, moduli space, etc. This deficiency is corrected in
Sections 3 and which contain new combinatorial proof of the main identity obtained by
Kontsevich[9]:

2d; — D!
Z {Tay - b H 2d,+1

> di=3g—3+n
2-V(I)E(I') 1
=2 o L o0 (139
Gelyn eeg(G) M@ T i

This identity connects the observables of topological quantum gr&aty(1.2) with av-
erages of the random matrix (Kontsevich) model associated effectively with the ribbon
graphsr’, , representing the combinatorial moduli sp Omb of marked Riemann sur-
faces of genug. To avoid repeats of technical details descnbmg random matrices, ribbon
graphs, etc., discussed 8ections 3 and,Awe only notice thal’(I") in Eq. (1.35)rep-
resents the total number of vertices afid™) the total number of edges of the ribbon
graph Iy ,. Mathematically, the identityEq. (1.35) is just the statement that there are
different but equivalent ways to present partitions discussegkeition 1.4 In Section 3

we connect these partitions with some results coming from Nielsen—Thurston theory of
surface automorphisms. As it was demonstratgdl-#], this theory provides natural math-
ematical framework for description of dynamics of21 gravity. In these references the
canonical (fixed genug) partition function for 24 1 gravity was obtained. This partition
function was used for description of the dynamical transition from the pseudo-Anosov to
Seifert-fibered (periodic) regime (phase) of-21 gravity. We remind our readers about
these concepts within the boundaries of Nielsen—Thurston theo8gdtions 3 and we

argue that the W—K partition function is relevant for the Seifert-fibered phase. This phase
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was not discussed if1—4]. We should warn our readers that complete description of the
Sefert-fibered phase requires more than just the W—K model. For instance, Kulkarni and
Raimond[58] had found a very interesting connection between the Seifert-fibered and
anti-de Sitter three manifolds which are just Lorentz manifolds of constant negative cur-
vature. Such anti-de Sitter three manifolds had been recently classified by Frig®8dois

In spite of the fact that they have received considerable attention in physics litgf@ture
recently, the complete description of this phase (which by the way contains all known crys-
tallographic groups and much md&0]) in physical terms remains challenging research
problem.

Thus, the results dfL,4] for the partition function of 2+ 1 gravity should be extended
to reach an accord with results of W-K model. To this purpose, following NidBEJp
dynamics of the Riemann surface homeomorphisms should be lifted to the universal cover,
e.g. to the Poincaré disc model B2. In such model the set of geodesics (geodesic lam-
ination) is represented by the set of nonintersecting arcs (i.e. circular segments whose
ends lie onsL). The combinatorial arrangement on the disc is described by the Catalan
numbersC,,. These numbers had been used earlier in our Vibfrkfor construction of
the partition function. In this paper we use this combinatorial data in order to establish
several important bijections: (1) from the set of arcs to the set of Dyck paifps5; (2)
from the set of Dyck paths to the set of parallelogram polyominbesg,6; (3) from the
set of polyominoes to the set of Young tableaux; (4) from the set of Young tableaux to
the set of vicious walkerd;igs. 7 and 8 This chain of bijections is needed in order to
bring our earlier obtained results for the partition function in accord with the LHS of the
Kontsevich identityEq. (1.35) To bring this partition function in accord with the RHS
of this identity the ribbon graphs need to be constructed. This is discussgeciion
4. Unlike Kontsevich[9] and otherd62-64] we do not use quadratic differentials (dis-
cussed earlier in our papelk,2]) for construction of these graphs. Our method is based
on use of known various equivalent geometrical ways to describe the combinatorics of
Catalan numberpt2]. The edges of thus constructed ribbon graphs are replaced by the
paths of vicious walkers so that in the end using combinatorics of the Young tableaux
the partition function for assembly of vicious walkers acquires the form of the RHS
of Eq. (1.35)

Section 5is included in this work for several reasons. First, it discusses the issue of
universality of the W—K model from the point of view of dynamical systems theory. By
universality we mean the fact that partition functions of W—K and many related models
to be discussed briefly in this section are solutions of the KdV hierarchy. The reasons
for this universality can be traced back to the very basic properties of quasiconformal
transformations known already to Ahlfors long time 466]. Although in[3] these trans-
formations had been discussed extensively, in this paper more up-to-date information is
presented to make it relevant to the results obtained in earlier sections. This includes some
facts about the Thompson and the Ptolemy groups, about their connections with binary
trees (and, hence, with Catalan numbers) and their relations with the universal Teichmiller
and moduli spaces, etc. Second, it discusses briefly some potential physical and biolog-
ical applications of the obtained results. Finally, it discusses connections with Frobenius
manifolds, self-dual Einstein equations, etc., thus leaving many problems open for further
study.
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2. From vicious walkersto Kontsevich model via Gaussian unitary ensemble of
random matrices

Following Forrestef54] and Fishef52], we would like now to formulate a lock step
model of vicious walkers. Incidentally, this model is just many walks generalization of the
directed polymer model considered in our earlier wig&]. The continuum limit of the
distribution function for this directed polymer produces the Euclidean version of the Dirac
propagator for particle whose mass is associated with bending probabilities to be discussed
below. In case of many walkers the Fermionic nature of the Dirac “particles” (walks) imposes
a sort of Pauli principle which forbids two walks to intersect. This is characteristic to all
quantum many body problems where all “particles” live in the same “world tif6&].

In the theory of Brownian motion each walker is allowed to have its own world 68

so that, accordingly, one can have many world times quantum mechanics. We shall refrain
from discussion of these options referring interested reader to current litef@®jr& he

lock step model assumes just one “world time”. Technically this means the following.

We consider a square lattice wherecoordinate is assigned for “space” while the
y-coordinate is assigned for “time”. Ip walkers are labeled in linear sequence along
x-axis so that one has

X1 <X < - <Xp (2.1)

at “time” + = 0, the same inequalities should hold for all subsequent times. The walkers
start either on the even or on the odd numbered sites on-thds. At each tick of the
clock each walker moves either to the right or to the left (along lattice diagonals) with equal
(bending) probabilityw. The probabilities, in general, may not be equal and are associated
with masses of the Dirac particles as discussed in our Y&k Because of imposed initial
condition, no two walkers can occupy the same lattice space at any time. This circumstance
makes walkers “vicious”. Letg = (x1,0, ..., xp,0) be the initial configuration of such
vicious walkers and: = (x1, ..., x,) be the final configuration at time To calculate

the total number of walks starting at= 0 at xg and ending at at x we need to know

the probability distributiorW,(xo — X; t) that the walkers proceed without passing, i.e.
maintaining the inequalities

xj—1(t) <xj(t), j=2,3,...,p for 0<¢ <t (2.2)

from their initial configuration at time = O to their final configuration at time It is of
interest to study this problem for large times— oo. In this case it is possible to make
a transition to the continuum limit in our study of the probability distribution. In doing so,
we shall follow the arguments of Huse and Fisf&3]. To begin, we need to recall that in
the continuum limit the probability distributioWg(xo — X; t) for p independentandom
walkers is known to be

exp{—|x — xo|%/2Dt}

(27 Dt)P/2 (2:3)

W,?(Xo — X;t) =

The diffusion constanD sets up the scale since, as usyat,; — xj,o)z) = Dt. Because
of use of a single world time for all walkers the above distribution function can be also
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viewed as distribution function for singlewalker in p-dimensional Euclidean space. The
restrictions given b¥q. (2.2)mpose additional constraints that such a walker must not cross
any (hyper)planes described by the set of equatigns x2, xo = x3,..., xp—1 = xp. In

view of the results oSection 1 e.g. sed~ig. 2 and discussion related to it, the assembly

of these planes forms Grassmannian manifold. This statement can be clarified further by
considering the following example. Following Gaudiit®] consider Schrddinger equation

for one-dimensional Bose gas pfparticles interacting via point-like pairwise interaction
potential. The dimensionless form of the Schrédinger equation for such particle system is
given by

P v

—Zﬁ—i—ZcZ(S(xi—xj)lI/:ElI/. (24)
i=1 i<j

This equation is equivalent to the boundary value problem of obtaining the wave function

¥ of the equation

—AW = EVY, (2.5)

whereA, is just p-dimensional “free” Laplacian, and the wave functigris subjected to
the set of constraints:

<i — i) Ule _y—o+r =2c¥, 1<i<j<p. (2.6)
8xi 8)6]' v
The conditionZ = 0 onthe hyperplanesis achieved in the limit co according to Gaudin
[70]. It can be shown that for any solution of the corresponding quantum mechanical
problem is obtained with the help of the Bethe ansatz mefffi@ld Moreover, any problem
solvable by the Bethe ansatz method is essentially of the type just described as had been
demonstrated rigorously by Gutk[i@1]. Therefore, not surprisingly, that there are deep
connections between the classical exactly integrable systems of KP type and the quantum
mechanical exactly integrable systems solved by the Bethe ansatz nig2hothe Hecke
algebra leading to the Yang—Baxter equations providing mathematical justification of the
Bethe ansatz method is coming from some particular representation of the symmetric group
[73] and, hence, is connected with Schur and related polynomials. Some additional details
can be found irf74].

The mathematical problem posedbBys. (2.5) and (2.6an be equivalently formulated
as problem about properties of random walk ingiddimensional kaleidoscope. That is we
are looking for solution of an eigenvalue problem for “free” Laplacian compatible with some
reflection groud70,71] In the simplest cases these are just subgroups of the symmetric
groupsS, made out of even and odd permutations. In view of this, we obtain,

Wp(Xo = X 1) = Y e(g)WJ(gXo — X: 1), (2.7)
geSy

wheree(g) = +1 depending upon the symmetry of permutation (even or odd). Taking
Eqg. (2.3)into account, this result can be rewritten equivalently as
exp(—(x? + x2)/2Dt}

Wp(Xo = X; 1) = Up(Xo, X; 1) (27 Dtyr/2 '

(2.8)
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where
) (X - gXo)
Up(Xo. X; 1) = Y e(g)exp[ Dt } : (2.9)
geSy
Some short calculation explained[B8] produces
U, (Xo, X; 1) = const A(x) A(xp)/(Dt)"» (2.10)

with const = 1/112!- .- (p — D!, n, = (1/2) p(p — 1) and A(x) being the Vandermonde
determinant:

Ax) = [ e —xp. (2.11)

i<j

Remark 2.1. From standard texts in probability theory, e.g. $@8], it is known that
non-normalized expression for the probabilugg(xo — X; 1) is the long time limit of
the formula providing the total number of walksmokteps (since = n) from pointxg to
pointx. Accordingly,Eqgs. (2.7)—(2.10provide the total number of nonintersecting directed
walks and, hencdy, (xo — X; t) ~ detM as shown irEq. (1.34)

It is convenient to assume now that= xg. Then, upon rescaling, the following result
holds:

W, (X = X0; ) = Pp(x1, . .., xp) = constexp(—x?) A%(x). (2.12)

This is just the probability distribution of eigenvalues of random matrices from the Gaussian
unitary ensemblgs5]. Following Dyson[76] define the:-point correlation function by

! o o
Ry(x1,...,xp) = #/_m/_m Pp(x1, ..., xp) Oxyqq - - - dxp. (2.13)

Using this definition the connectedpoint correlation functiong), (x4, . . ., x,,) are defined
in a usual fashion, e.g.

T1(x) = R1(x), To(x1, x2) = —Ro(x1, x2) + R1(x1) Ro(x2),

etc. Using method of orthogonal polynomi@i®] it can be demonstrated that

R, = det[K, (x;, xj)]ji j=1....n> (2.14)
where the kernekK , (x;, x;) is given by
p—1
Kp(x, ) =Y or()gr(y) (2.15)
k=0

with functionsyy (x) depending on the random matrix ensemble used. In the case of Gaussian
unitary ensemble they are given by

x2 d\’
(pk(x)=(2kk!ﬁ)l/zexp<7> (_E) exp(—x?). (2.16)
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The connected-point correlation functiorT, (x1, .. ., x,,) can be neatly represented using
the kernelkK , (x, y) as follows[55, p. 92]
Th(x1, ..., xp) = Z Kp(x1, x2) K p(x2, x3) - - - Ky (xn, X1), (2.17)
P
where the sum is over afk — 1)! distinct cyclic permutations of indiced, ..., n). For

p — oo the kernelk , (x, y) can be calculated and in terms of the rescaled variables it was

obtained independently by Tracy and Wid@®6] and by Forresteb7]:
K(X.Y) = Ai(X)AI (Y; — ?\/l(Y)Al (X)’ (2.18)

whereAi(y) denotes the Airy function

Ai(y) = /oo expli(3x° — xy)) dx, (2.19)

and the prime denotes differentiation with respect to its argument. Following Kontsevich
[9] we define now the matrix Airy function analogous to the “scalar” case

A(Y) =/exp(itr(%x3—XY))dX, (2.20)

whereX andY are HermitianN x N matrices for some&V. After some computation
Kontsevich obtains
JVv-2)28eMAY D (F)

A(Y) = (2 :
i det(y/ ™t

(2.21)

where

. o0 . x3 3\t
AUD () =/ dx x/71 exp(i (— - xy,»)) = <I—> Ai(yi). (2.22)
oo 3 dyi

Fori, j =1, 2 we obtain,
AX,Y)
(277)1/2

that is the Tracy—Widom kernel and the Kontsevich Airy matrix integral are practically
identical. Naturally, it is of interest to find out if this result will hold fiorj > 2. Comparing

Egs. (2.14), (2.17) and (2.28)e conclude thaEq. (2.17)should be considered as a likely
candidate for further treatment. This conclusionis in accord with recent results of Okounkov
[77]. We shall use some of his results belondaction 3while in this section we would

like to discuss different approach. To this purpose, following Mgbig, let us notice that
correlation functionk,,, Eq. (2.13) can be presented in the following form:

=KX, Y), (2.23)

Ry =Y (=" " [] KpCar x5)Kp (i, xc) - - K p (xa, Xa), (2.24)
P 1

where the permutatio® is a product ofn exclusive cycles of lengthss, ho, ..., h,, of
the form(a - b — ¢ —» -+ — d — a), > 7 hj = n. Comparison betweefgs. (2.17)
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and (2.24)ndicates that if, say, the connectegboint correlation functiorT,, is t function
of KP hierarchy, then correlation functiat), should possess this property as well.

To prove that botlR,, and7,, are indeed functions several steps are required. First, we
would like to reconsideEqg. (2.21)in the light of subsequent refinements of Kontsevich
work in physics literature. Following Di Francesf#8] the Kontsevich integraby (A) is
given by

[ expltri(M3/6 — (AM?/2)]dM
[ exp[-tr(AM2/2)]dM

On(A) = , (2.25)

whereA is diagonalV x N real matrix with elements = (11, ..., Ax) along the diagonal
andM beingN x N Hermitian matrix. After some calculations this integral can be brought
to the following form:

|z, Dz, D%z, ..., DN 1z

On(A) = , 2.26
N(A) |1 A, A2, .. AN (2.26)
where
A2 a8
1=z200) = / dm,| o exp[ <— 1 m— - 3)} : (2.27)
and
1 1d
D=A+-5—-=—. 2.28
T2 T im (2.28)
The Vandermonde determinan{l), e.g. sed=q. (2.11) is written in the present case as
AG) = 11,02, AN (2.29)

so that the expression in the numeratoEof (2.26)is also a determinant. Second, since
z(1) is a solution of Airy’s equation

(D? = 1%)z(0) =0 (2.30)

written in a somewhat unconventional form, it is possible to replace terms of the type
D?Pz(3) in the determinant oEq. (2.26)by 127z(%) and, analogouslyp?’*1z(%) by
22Pt1z(3), where

1
zZ(A) = XDz(x). (2.31)
This allows us to rewrit&y (A) in the following form:
IxN =1z, N2z,
On(A) = 2.32
N () [xN=1 xN=2 1] ( )

with x = 1/A. Third, if the asymptotic expansions ofindz given by
) =Y e, (2.33)

k>0



A. Kholodenko / Journal of Geometry and Physics 43 (2002) 45-91 63

=) din ¥ (2.34)
k>0

with known coefficientsy andd are substituted int&q. (2.32)it acquires the following
final form:

N 3n1+N-1 3no+N-23 3ny

5 _ (imod2)|x 7, X Zyoeay X |
ON(A) - Z an,' |)CN_1 )CN_Z 1| . (235)
0 , s ey

ni,..,ny>0i=

From this form one can recognize at once the Jacobi—Trudy forjf@t4ad 2]for the Schur
polynomialssS,, given as the ratio of determinants. Since Schur polynomials anections
ofthe KP hierarchy as we had discusse8attion 1itis clear tha®y (A) is alsor function

of KP hierarchy. Due to specific form of this function (it contains only the odd powers of
suchr function is actuallyr function for the KdV hierarchy in accord with Miwa et §4].

It remains to demonstrate now tHags. (2.17) and (2.24Iso can serve asfunctions of
KdV hierarchy. Evidently, for = 2 this is the case in view of the arguments just presented.
To prove that this is the case for> 2 itis sufficient to employ the Littlewood—Richardson
(“fusion” formula in physics terminology) rule given by

SuSy =Y Ch,S: (2.36)
A

with the Littlewood—Richardson coefficier(f%v assumed to be knowB9—42]in principle.
Successive applications of this formulagqs. (2.17) and (2.24)roduces a combination of
Schur polynomials each of which isfunction of KP hierarchy. Moreover, since far= 2

suchz function was that for KdV hierarchy, evidently, for the same reasons as discussed
by Di Francesc$78] the general case > 2 also produces functions for KdV hierarchy.

3. Nielsen—Thur ston surface automor phisms and partition function of 2 4+1 gravity
3.1. Review of Nielsen—Thurston theory

Let S be closed orientable Riemann surface of geqishe first homotopy group, the
fundamental grougr; (S) of surfaceS is made of 2 generatorgx;, y;},i =1— gand a
single relation so that its presentation is known to be

T[l(S) = (-xlv Y1, ..., -xgv )’g|[x1,)’1] e ['xg’ yg]) (31)

Nielsen has noted that there is one-to-one correspondence between automorphigsis of
and surface self-homeomorphisms. This is summarized in the following proposition.

Proposition 3.1 (Nielsen[68]). If g > 1,then every element of Qut (S)) is represented
by a unique isotopy class of self-hnomeomorphisngs of

An important subgroup oDut(1(S)) is the mapping class groupt, discussed in
Section 1Geometrically, this group is finitely generated by Behn twistsn simple closed
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curves (lamination set) aBiwhose physical significance we had discussed extensively in our
previous work4]. A simple closed curvé on an orientable surfacg has a neighborhood

&€ homeomorphic to an annulus which is convenient to parameterifle,®}|1 < r < 2}.

The Dehn twist inC can be imagined as an automorphigm: S — S. It is given by

the identity off€ and by f, 6] — [r, 6 + 27zr] on £. Using results of our previous works
[1-4], let us illustrate these concepts on the simplest example of a puncturedforins

this caseOut(1(T2)) = GLy(Z) and M3 1 = PSL(2, Z). Since any transformation from
PSL(2, Z) is obtainable by projectivization @L(2, Z) we discuss everything in terms of
SL(2, Z) with projectivization at the end. Any transformation which belongSit?, 7) is
expressible in terms of 2 2 matrixA given by

a b
A:(c d) (3.2)

with integer coefficients subject to condition: det= ab — cd = 1. The characteristic
polynomial for this matrix is given by

12 —trAr + detA = 0. (3.3)

This implies that the eigenvalues Afare either:

(a) both complex (when# =0, 1, —1),
(b) both equal tat1 (when trA = +2),
(c) distinct and real (whefir A| > 2).

If 4 is toral automorphism then, transformation (a) is capjedodicsince(§4)" = 1
for somen (actually,n = 12 by the Hamilton—Cayley theorem), transformation (b) is
called reduciblesince it leaves a simple closed cu@envariant, transformation (c) is
called (pseudo) Anosov ((pseudo) Anosov if the line/vector field on surface (does) does not
contain singularities). Such transformations are of an infinite order. Physical significance of
this factis explained and illustrated in our previous widik The largest of two eigenvalues
is associated with topological entropy of the line/vector flow and is related to the amount of
stretching of surfacé& and, hence, with the dilatation parameter of the Teichmiller theory.
Nielsen—Thurston theory generalizes the above classification of surface automorphisms
to all surfaces of genug > 1. Already Nielsen had realizgé1] that forg > 1itis
more convenient to study homeomorphisms of surfabg considering their image on the
universal cover o which we choose as Poincaré disc modeHdéfi.e. intD U S3 = H2,
According to Nielserj61] we have the following proposition.

Proposition 3.2. Any lift 2 of the surface self-homeomorphismsh— S to the universal
cover ofS extends to a unique self-homeomorphism of the unit@jse. toint D U S&O.

If surface self-homeomorphisnisare associated with Dehn twists connected with a
set of simple closed nonintersecting curves homotopic to geodesics (such set is called
geodesic laminatiort), then their liftsh(£) are associated with some maps of the circle
S1 extendable (quasi conformally) to the interior of the disas discussed in our earlier
work [3] andSection 5An image of the closed geodesic Snwhen lifted toH?, is just a
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segment of a circle whose both ends liesfp. Since geodesics are nonintersecting, circle
segments orS(}O are also nonintersecting. In order to recover results of W—K model, in
this work we are interested only in tiperiodic maps of the circle as it will be explained

in Section 4(after Eq. (4.4). In connection with such maps the following remark is of
importance.

Remark 3.3 (A variant of Sarkovskii theoref9, p. 88). Let f: ST — S be a continuous

map of the circle with a periodic orbit of period 3. If the lift R — R has also a periodic

orbit of period 3 thenf has periodic orbits of every period. The condition on the lift map

f cannot be dropped. IBection 5we argue that even though in the case of W—K model
the continuous maps of the circle are to be replaced by the piecewise linear maps still the
period 3 remains as minimal period.

Remark 3.4. As noted by Kontsevicli9], moduli space problem makes sense only for
Riemann surfaces obeying the following set of inequalities:

g >0, n >0, 2—-2¢g—n<0 (3.4)

with n being the number of distinct marked points (effectively distinct boundary compo-
nents). Boundary components can be eliminated bystiettky doubleonstruction. This
construction can be performed as follows Mf is a complex manifold withCy, ..., C,
boundary components, one can consider an exact duplicate of if/sayith the same
number of boundary components, s@y, . . ., C,,. Evidently, for each point € M there is
a “symmetric” pointt € M. The Schottky double® is formed as a disjoint uniof U M
and identifying each point € C; with points € C; for 1 <i < n. In the simplest case we
have initially either punctured torus, i.e.= 1, n = 1, or the thrice punctured sphere, i.e.
g = 0,n = 3. In both cases the Schottky double is a double torus. A double torus has three
geodesics which belong to the geodesic laminatlofihe image of these geodesics lifted
to H? produces three circular arcs whose ends liesgn This is minimal number of arcs
required for the moduli space problem to make sense. AccordiRgteark 3.3his is also
a minimal period for the periodic homeomorphisms of the circle in view of the Sarkovskii
theorem. More on this topic will be discussed3action 5

In the mean time we would like to discuss the general case of Riemann surfaces of genus
g > 1 with n boundary components. It is argued&9] that the total number of geodesics
on the Schottky double isg6— 6 + 3n. This is the dimension of space of holomorphic
quadratic differentials (real on each of the boundary components). Hence, in accordance
with Teichmdiller theonyj20], it is the dimension of the Teichmiller and, accordingly, the
moduli space of such Schottky doubled surface.

Remark 3.5. The dimension of moduli space of Schottky doubled surface coincides with
the dimension of moduli spacﬁ/lgf’,;“b of three-valent ribbon graphs used in Kontse-
vich paper[9]. In the present case the same dimension for the moduli space (as ob-
tained by Kontsevich) is obtained without explicit use of the quadratic differentials. More-
over, the equivalent of the Kontsevich—Penner ribbon graphs are to be obtained below in
Section 4
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Fig. 3. Combinatorics of Catalan numbers presented through arrangements of nonintersecting arcs (representing
closed hyperbolic geodesics in the upper half plane Poinwaxdel ofH2).

Itis convenient to map the circle at infinig, into the real axifk. Accordingly, the arcs
corresponding to closed geodesics on the Schottky doubled Riemann surface will become
semicircles whose ends are located on the realRxiEhis is depicted irFig. 3.

The mathematical problem associated with arrangement of the arcs depietgdinan
be formulated according to Stanlg2] as follows. It is required to find a number of ways
to connect 2 points in the plane lying on a horizontal line bynonintersecting arcs, each
arc connecting two of the points and lying above the points. The solution of this problem is
just the Catalan number:

1 <2n>
C, = .
n+1\ n

It was used before in connection with construction of the partition function for eurl2
gravity model1,2]. Catalan numbers are very helpful in solving the mathematical problem
of enumeration of meanders. Meanders had been used as well for description of the partition
function of 2+ 1 gravity[1] and other useful statistical mechanical, dynamical and biological
modelqd81,82] Meanders can be easily constructed from the double set of arcs as illustrated
in Fig. 4taken from our earlier worKl].

3.2. Partition function o + 1 gravity

W-K treatment of two-dimensional topological quantum gravity is done in the grand
canonical formalism. This means that such treatment requires two steps. First, one should
construct the (canonical) partition function for the fixed genus Riemann surface. Second,
one should perform summation over all genera with some chemical potential. Evidently, the
second step can be performed only if the results of the first step are available. For this reason
in our previous work$l,2,4]only the first step was considered. Since the main Kontsevich
identity, Eq. (1.35) is written for the canonical (fixed genus) case, it is sufficient to consider
the fixed genus case in this work also. In order to reach an agreement with W—K results, it
is necessary to reconsider our earlier obtained results for the canonical partition function of

2+ 1 gravity.

Fig. 4. Construction of a typical meander.
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Let us begin with some reminders. Meander of ondés a closed nonselfintersecting
curve which intersects some straight line in exactlypeeassigned points. 1] we had
discussed the way meander can be constructed from two arc systems, e.qg. like those depicted
in Fig. 3. For reader’s convenience we reproduce a fragment of such construdsign4nit
is clear from this figure that, in general, such procedure of constructing meanders will yield
a set of disconnected meanders. For a given fixed numle¢the numbeM,(,k) denote the
total number of disconnected topologically distinct meanders whose total nunibétriss
clear that 1< k < n, and that

Cp <M, < C?, (3.5)

where M,, = M,(,k:l). Each meander configuration has some statistical weight
exp{—pBJ} (with 8 being some fictitious inverse temperature dnd related to the surface
energy) dictated by the physics of the problgh] so that the total canonical partition
function Z(x) is given by

(0.¢] n
Zex) =) x"y MPg (3.6)
n=0 k=1
with g being determined implicitly through the equation

ad
(k) = g& In Z,(x) (3.7)

with (k) denoting the average number of meanders in the clistéris number is expected
to be assigned. If this is not the case, the partition function should be written differently.

Remark 3.6. The partition functioriZ, (x) is written for the system of meanders forming a
measured foliation on a Riemann surf&oef fixed genug. Being guided by thEroposition
3.2, we would like to consider the lift of such foliation to the universal coveSof.e. to
the unit disc model oH2.

Remark 3.7. In both[1,4] the main interest in obtaining the partition function was to study
dynamical transition from the pseudo-Anosov (hyperbolic) to periodic (Seifert-fibered)
regime. In the present case only the periodic (i.e. Seifert-fibered) regime is studied. This is
explained irSection 4 Seifert-fibered regime is not discussefilig]. Only in this (periodic)
regime W—K results can be recovered frént 1 gravity.

To construct the partition function on the unit disc, it is convenient to map the unit disc
into the upper half plane model fét2. Then, the system of arcs representing geodesics
on S is mapped into that depicted iig. 3. Next, the arc system depicted tg. 3is
mapped into the associated random walk as depict&igins. Because of such mapping,
it becomes possible to connect the combinatorics of vicious walkers discusSedtion
2 with that of arcs and meanders. Indeed, the walk depict&igin5is directed and is not
allowed to intersect-axis, except at initial and final points. By analogy witg. 4one can
think about another Dyck walk (below+axis). Since both walks intersect each other only
at initial and final points this situation looks almost the same as for two vicious walkers.
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Fig. 5. A typical Dyck pattj42] from (0O, 0) to (2r, 0) made of stepgl, 1) and(1, —1) never falling below-axis
is in one-to-one correspondence with a typical arrangement of arcs.

Following Labellg[83], we can make it identical to that for the vicious walkers. To achieve
this goal, it is sufficient to translate the upper part by the ve@dtot) while the lower part
by the vector(1, —1) so that one obtains either a problem about statistics of one vicious
walker in the presence of the absorbing wall or about statistics of two vicious walkers. Both
problems are discussed in Fisher’'s pgp@i and are actually equivalent. Hence, results of
Section 2can be applied now and one obtains the Tracy—Widom ketel(2.18) in the
asymptotic limit of large genus or large number of boundary components. This is obviously
not sufficient. To go beyond this simple minded result requires to make several nontrivial
mappings (bijections). We shall be brief in describing these bijections since details of the
proofs can be found in the published literature.

We begin with the observation that to each Dyck path, e.g. tH&girb, one can associate
the Dyck word so that the Dyck path having lengthi encoded by a Dyck word of length
2n. The word is composed of lettexsandx in such a way that each north—east (respec-
tively south—east) step corresponds to the lett@espectivelyk). The peaks (respectively
troughs) correspond to the factars (respectivelykx). Instead of north—east (respectively
south—east) steps it is possible to choose strictly north (respectively east) steps for the Dyck
paths to get a configuration like that depictedrig. 2 Hence, we obtain the following set
of bijections: (a) from the set of arcs to the set of Dyck paths; (b) from set of Dyck paths to
the set of Dyck words; (c) from the set of Dyck words to the set of lattice paths [@o@)
to (n, n) with steps(0, 1) or (1, 0) never rising above the line = y (incidentally one can
construct instead the lattice paths which never go below the diageral [84]). To this set
of bijections we need to add two more now. The first one is between the Dyck path, e.g. that
depicted irFig. 5, and the parallelogram polyomino. Polyomino can be made out of squares
(calledcells). A finite connected union of cells such that the interior is also connected and
there are no cut points is callgdrallelogram polyominalt is defined with accuracy up to
translation. As depicted iRig. 6, a parallelogram polyomino is bordered by two noninter-
secting paths having only north and east st&js. 6 depicts bijections between the Dyck
path, the Dyck wordv and parallelogram polyoming(w). In such bijection the magnitude
and the order of peaks and troughs determine the shape of the polyi@3ijrarallelogram
polyomino is in one-to-one correspondence with skew Young (or Ferres) diagram of shape
A/u. In the example displayed iRig. 6 we have the shap@, 4,4, 2,2,1)/(3,2). That is
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@

Fig. 6. Bijections between the Dyck path, the Dyck word and parallelogram polyomino.

from standard looking Young table of shaf@e4, 4, 2, 2, 1) a piece in the upper left corner
is truncated which is also standard table of shi@y2]. Hence, the skew Young diagrams
differ very inessentially from standard looking Young diagrams. Using this circumstance,
we need to exhibit yet another bijection. It is the most important for our development. To
this purpose we need to uSeeorem 1.1-ndCorollary 1.12in order to state yet another.

Theorem 3.8. There is a weight-preserving bijectign between nonintersecting paths
(P1, ..., P) and column strict Young tableaux of shapeith entries from N

To demonstrate that this is indeed the case, we follow the example discug&dd. in
More general case of skew column strict Young diagram is discusgéd,isection 7.16]
Following [51] we takek = 4, A = (5,3,2,2) and N = 6. Although we have now
four nonintersecting paths their trajectories are completely specified by labeling of their
horizontal edgesy(coordinates), e.g. sdég. 2 The information about the path.1_;
can be placed (encoded) into the rowf tableauT. In our case the (vicious) paths are
depicted irFig. 7while the corresponding encoding of the Young table is depict&irs.
Thus, using results @Gection 1especiallyTheorem 1.1-ndCorollary 1.12 we obtain the
determinant det which contains all the configurational information about collection of
vicious walkers. Using results &ection 2this information is being translated into that for
n-point correlation function®,,, Eq. (2.24) andT},, Eq. (2.17) Using this information and
by analogy witheq. (3.6)the partition function can be written in the following tentative form:

ZIx] = Zl / qdy,- expix - V) T [y] = lenm, (3.8)
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1

b

P P, P, P,

>

Fig. 7. Four vicious walkers encoded by their horizontal edges.

where the boldface far andy variables reflects the fact that they are multidimensional,
e.g.x-y = > " ;xi, etc. We use the word “tentative” because we would like at this
point to make a connection with recent works by OkounKox,86] and Okounkov and
Panharipand7] who use the asymptotics of Hurwitz numbers to arrive at results similar
to ourEq. (3.8) For reasons which will become clear in the next section and for the sake
of agreement with these recent worksy. (3.8)should be rewritten as follows:

(—D"r@myn? | oox
Z,,[X] = Z[.Xl, ey xn] = W (ﬁ) (39)
with
EX) = / [ [ dvi expox- W T y). (3.10)

Remark 3.9. For developments presented in this palggs. (3.9) and (3.1(re actually
unnecessary. They are provided, nevertheless, because they are interesting in their own right
and, although the initial arguments in these papers are different from ours, the end results,
e.g.Eq. (3.10) is in accord with ouEg. (3.8)

3 3 |5
4 | 4
6 | 6

Fig. 8. The Young tableau which encodes the information about trajectories of vicious walkers.
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The interest in these equations stems from the fact that in the daliggt, Eq. (3.10)
acquires familiar in physics literature path integral form. This fact may lead to some new
physical applications. Already many physical applications of vicious walker models can be
found in papers by Fish¢s2] and by Huse and Fish§3].

In the present case, using results of Tracy and Widom (Eq. (4.6 Eq. (2.18)of
Section 2can be rewritten as follows:

o
K(X,Y) :/ dz Ai(X + 2)Ai(z + 1) (3.11)
0
with Airy function defined inEq. (2.19) Using Okounkov’s Lemma 2.6 ¢77],

1 ox x3 a+b (a — b)?
[ —_— x J— .
2Jmx P 12 2 4x

/ ” 4z Az + @) Az + b) expixd) =
(3.12)

Eq. (3.10)can be rewritten as follows:

1 exp1/123 7 x3)
omgn/2 l_[z\/_l de’

% exp( Z (i — yl+l) Z yi+ )’l+l i) ’ (3.13)

i=1

EX) =

provided that the cyclic boundary condition, 1 = y1, is imposed. This makes the above
“path integral” reminiscent to that for the ring polymer near hard nonpenetrable wall in the
presence of some stretching folfé&].

To make connections with results of Kontsevi€&} we need to rewrite the partition
function Z[x] as genus expansion:

o
ZIX| =) Zy (). (3.14)
g=0
where in view ofEq. (1.2)
Z,) = Y (T4 Ta,) l_[x (3.15)
> di=3g—3+n

The question arises immediately about connectionsEg$. (3.14) and (3.15ith
Egs. (3.8)—(3.10)This issue is addressed and treated7in,87] and, therefore, there is
no need to repeat the arguments presented in these references here. Instead, to reach essen-
tially the same goals we would like to use different arguments in this work.

In Section 1..we had noticed that the calculation of tautological averages is effectively
equivalent to the calculation of the Weil-Petersson volume&lgf,,. In algebraic geom-
etry there is a Wirtinger formula for such volume calculati¢hg]. In connection with
Grassmannians and Schubert calculus this formula had been discussed in the fundamental
paper by Cherid6]. Wirtinger-like formula is used in Kontsevich paper as well (e.g. see
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Section 3 of[9]). Hence, the partition function of two-dimensional topological gravity is
effectively the generating function for the Weil-Petersson volumes. In the fixed genus case
such volume according to Kontsevich is given by

ol (W) = 7 [ ResG) +- 4 pReCu) (3.162)
with c1(A;) being the first Chern class of thth line bundlej = 1, ..., nandd = 3g—3+n.
The above expression becomes a true volume when in thg*stindeterminategp™ =
(p1, ..., pn) (arbitrary sequence of positive numbers) eaglis being put equal to one.
This is not necessary, however, since the quantity of interest is the product gikzen {dy2)
which is obtainable anyway witp;’s being different from one. Hence, the indeterminates
actually play a role of an auxiliary variables analogous;t;m Eqg. (3.15) The connection
with Schur polynomials and, hence, withunction is clear if one combindsg. (1.28)and
Porteous formulaiq. (1.27)with Eq. (3.16a) Finally, arguments presented $ection 2
especiallyEq. (2.36) provide needed justification &f. (3.15)since the resul&q. (3.16a)
and (3.16b)of Kontsevich can be equivalently rewritten as

v0lys (M) =GN Y (T4~ Ta,)

> di=d i=1

e
= 3.16b
o ( )
To make connection with the matrix models additional steps are required. For instance,
Kontsevich is making a Laplace transformky. (3.16b)in order to obtain

- 2 2d) . _oa
L0l (Mg )1 d) = Y (rdl---fd">]_[(d—_|),\i (@di+1) (3.17)
S di=d i=1 U

with A; being the Laplace variable conjugateyto Taking into account tha@d;)!/d;! =
24 . (2d; — 1)!! the overall factor of 2 drops out from the main Kontsevich identity,
Eqg. (1.35) In view of the results of77,86,87]and that going to be presentedSection 4

in order to reach an accord with the result of Kontsevlef, (3.17) it is also necessary
to perform the Laplace transform ¢y, (x) in Eq. (3.15)provided that this expression is
properly rescaled. The Laplace transform is obtained then as follows:

oo N
L2 Es b = [ [ s expg 02,00 . (318)
’ Tl l:[l T @nyre [T, 1
Application of the formula
- 1\ (2n — D!
/O dy y 172 exp(—sy) =TI (11 + 5) S 12 =27 2n+1/2—sn+l/2 (319)
to Eq. (3.18)produces the expected result:
~(2d; — D!
L2000 ) = 3 ) [ e (3.20)

S di=d i=1

where in order to achieve an agreement with Kontsevich, one needs to make identifica-
tion: A; = /2% in Eq. (1.35) Clearly, such identification is ultimately connected with
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rescaling made ifEq. (3.18) The justification of this rescaling is explained in the next
section. This is also needed for completion of the proof of Kontsevich ideBtity,1.35)of
Section 1.

4. Ribbon graphs, Young tableaux and Kontsevich identity
4.1. Construction of ribbon graphs

Ribbon graphs had been invented by Per@2} (similar construction can be found also
in papers by Harej88]) for description of the moduli spackf, , of Riemann surfaces.
In physics literature similar construction had been independently developed by Saadi and
Zwiebach[63] and later developed in numerous papers by Zwiebach, e.g8%¢eited
in Kontsevich work[9]. Both Zwiebach and Kontsevich use the Jenkins—Strebel quadratic
differentials (e.g. see Section 3 of our earlier w{izk, for condensed summary of their
properties) for construction of the ribbon graphs. In this section we would like to develop
alternative method of construction of ribbon graphs which does not require explicit use of
quadratic differentials. We would like to explain the rationale for constructing the ribbon
graphs in connection with results obtained thus far in this paper. First, the ribbon graphs
appear naturally in matrix models for strin@9] and QCD{91]. Hence, they are physically
interesting and easily constructible using Feynman-like rules known in quantum field theory
[92]. Second, mathematically these graphs are interesting for several reasons: (a) they are
associated with problem of imbedding of, say, trivalent graphs into Riemann surface of fixed
genug[93] and, since graphs are related to combinatorial group th@ddy this problem
is also of group-theoretic interest; (b) these graphs are also related to train tracks discussed
in our work [2]. Because of this connection with train tracks, the number of potential
practical applications is expected to be well beyond particle physics as explained in the
discussion section dR]. Third, and most important for the purposes of this work, they
are needed for establishing one-to-one correspondence between the topological gravity
and the random matrix models of string theory. The aspects of this correspondence are
discussed in detail if®0]. Mathematically, this correspondence is reflected in the Kontsevich
identity, Eq. (1.35) Hence, following Kontsevicl9] it is necessary to prove that the RHS
of Eq. (1.35)is equal to the LHS. IrSections 2 and @/e had demonstrated that the LHS
of the identity,Eq. (1.35) is associated with the enumeration of allowed configurations
for an assembly of vicious walkers. This problem has been mapped into enumeration of
the Young tableau, e.g. séégs. 7 and 8 These pictures provide a geometrical way of
describing partitions of non-negative integers. Hence, for ribbon graphs we have to find
analogous partitions. Evidently, the Kontsevich identify, (1.35) is just the statement
about existence of different but equivalent ways of describing partitions as had been stated
in Section 1

To describe partitions associated with ribbon graphs we need to construct such graphs
first. To facilitate reader’s understanding, we employ some results on graphs and ribbon
graphs from the pedagogically written paper by Mulase and PerjgdyaJltimately, our
way of constructing the ribbon graphs is different from that discussed in this reference since
we are not using quadratic differentials.
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Definition 4.1. Agraphl” = (V, £; i) consists of a finite set of verticés= (V1, ..., V;»)
and finite set of edges together with a map from £ to the setV x V)/S» of unordered
pairs of vertices called incidence relation. The quantity

aij = i YV, V)l 4.1)

is the number of edges connecting vertitggndV;. The degree (valence) of a vert&x
is the number

(V) = Zajk + 2ajj (4.2)
k#j
which is the number of edges incident to the vertex.

Definition 4.2. A graph isomorphism is a pair, 8) of bijective mapsy : V — V" and
B : & — &' that preserve the incidence relation.

To construct a ribbon graph the above definitions should be modified. The modification
consists in labeling of middle points of each edge thus effectively creating extra degree 2
vertices associated with each edge. We denote this extra vertex Bet Bow the new
set of vertices is the disjoint unignu Ve while the new set of edges is the disjoint union
€ U € since the midpoint of each edge now divides it into two parts. The incidence relation
is described now by the map

e ELE—Vx Ve (4.3)

because each edge Bf is connecting one vertex of to one vertex ol)g. Obviously, an
edge ofl¢ is called ahalf edgeof I'. For every vertew € V of I', the seﬁgl({\/} x Vg)
consists of half edges incident Wso that

(V) =lig* (V) x Ve)l. (4.4)
Definition 4.3. Aribbon graphis a grapli’ = (V, &; i) together with a cyclic ordering on
the set of half-edges as depictedHig. 9.

Such definition of the ribbon graph leads to the following construction of such graph out
of ordered vertices. The strips corresponding to the two half edges are connected following

RN

Fig. 9. A cyclic ordering at the vertex of the ribbon graph as compared with no ordering in the case of a vertex for
ordinary graph.
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Fig. 10. An elementary three-valent vertex associated with geodesics lifted to the Baliszar

the orientation of their boundaries to form ribbons. The final surface is no longer planar in
general. Itis an oriented surface whose boundaries are made of boundaries of the ribbons. To
illustrate this construction, let us consider the simplest case first. To this purpose, we recall
that for the case of punctured torus and trice punctured sphere we have three geodesics (on
the Schottky doubled surface) which we lift to the Poincaré disc. We associate with these
geodesics a trivalent graph as depicteéig. 10

Next, we make another copy of this picture. Then, we thicken the edges emanating from
the vertices and provide orientation in accord wii. 9. Next, we glue the strips to each
other. This can be done in two ways. One is depictddgdn11while the other is depicted in
Fig. 12 We would like to notice that in both cases we have constructed ribbon giaphs
I" with the number of thickened edges equal $0-66 + 3n number of edges (e.g. three for
both the trice punctured sphere and the punctured torus) in accord with Kontfvith
obtain more complicated graphs it is convenient to proceed by induction. To this purpose,
following again[64], we need to define the operationscohtractionandexpansion

— G

Fig. 11. One way to make the simplest ribbon graph (the underlying “normal” graph is shown for comparison)

which is topologically equivalent to the punctured torus. Notice that the same underlying “normal” graph also gives
rise to another ribbon graph which is topologically equivalent to the trice punctured sphere (not to be confused
with that depicted irFig. 12).

\‘\/—(Q (@\i@

Fig. 12. Another way of making the simplest ribbon graph (the underlying “normal” graph is also shown for
comparison). The ribbon graph is topologically equivalent to the trice punctured sphere.




76 A. Kholodenko / Journal of Geometry and Physics 43 (2002) 45-91

Definition 4.4. If the edgeFE of I' is incident to two distinct vertice®; and V, another
ribbon graphl™’ calledcontractionof I' is obtained froml” by removing the edg& and
joining the verticeg/; andV, to a single vertex with the cyclic ordering at the joint vertex
determined by the cyclic order of the edges incidentistarting with the edge following
E up to the edge preceding, followed by the edges incident & starting with the edge
following E and ending with the edge precedifg

Evidently, the contraction procedure decreases the number of edges and vertices by one.
Every ribbon graph can be obtained from the trivalent ribbon graph by applying a sequence
of contractions.

Definition 4.5. The expansion of the ribbon graph is operaiiorerseto the contraction.
This means that every trivalent ribbon graph can be constructed by the expansion proce-
dure starting from a very simple analoguerg. 10 In view of the Euler equation

V() —EN) =2—-2g—n (4.5)

such procedure will produce the desired Kontsevich-type trivalent ribbon graph. Let us
consider this construction in some detail. For example some representative contraction and
expansion of an edge is depictedHig. 13

Remark 4.6. The reader familiar with our earlier wofk], can easily recognize the white-
head moves characteristic for train tracks. This fact alone is sufficient for making connection
between ribbon graphs and quadratic differentials. Since in the present case no topology
changing moves are involved, this justifies our earlier statement that the results of W—K can
be recovered from the Seifert-fibered (periodic) phase-pfl2gravity.

For any vertex of degre# > 4 there arel(d — 3)/2 ways of expanding it by adding an
edge. Consider a portion @f made of vertex of degree > 4 andd half edges emanating
from this vertex. Adualto this portion is a convex polygon dfsides depicted ifrig. 14
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Fig. 13. Typical contraction—expansion (whitehead) moves characteristic for W—K model.



A. Kholodenko / Journal of Geometry and Physics 43 (2002) 45-91 77

Fig. 14. Expansion/contraction of a representative vertex facilitated by the associated with it dual polygon.

along with the underlying vertex. The series of contractions/expansions is ultimately related
to the number of ways a convex polygon witkides can be triangulated by nonintersecting
diagonals. This number is Catalan number a§@®). Although one may probably use this
observation to develop bijections analogous to those discus&ttion 3we leave such

an opportunity outside the scope of this work in view of another options to be discussed
below.

To finish our construction of the ribbon graphs we have to keep in mind few additional
facts. First, by looking afig. 10and realizing that two copies of the disc modeHs are
needed for construction of the ribbon graph, it is clear that the process of expansion and
gluing of strips to each other should be allowed to be different in each disc. Hence, we have
to associate the probability of 1/2 to every vertex on each disc. This means that we have to
have an overall (assembly) factor of'2!") for a particular realization of the ribbon graph.
Second, the rest of the automorphisms of the ribbon graph are, evidently, the same as for
the “normal” graph.

This concludes our description of the ribbon graph construction.
4.2. Young tableaux and Kontsevich identity

In Section 3the Laplace transfornk;q. (3.20) of the partition function for an assembly
of vicious walkers has been obtained. Now it is time to explain how these vicious walkers
reemerge with the help of the ribbon graphs. To this purpose let us notice that the bound-
ary components of these graphs can be looked upon as made of polygons as Kontsevich
had noted in Section 2.2 ¢9]. Hence, each ribbon graph is can be classified by certain
non-negative integer number of trianglt@s), quadrangleg:4), pentagonsgns), hexagons
(ng), etc. Each edge; (I") of the ribbon graph has some lengthEvidently, these lengths
can be grouped into sets identified with polygons so that the numbers above represent the
multiplicities for these sets. Suppose that the total ledgtt all polygons is prescribed in
advance. Then, given ribbon graph can be viewed as particular realization of the partition
of L into numbers associated with lengths of these polygons. Alternatively, one can assign
the total number of polygons (that is the total number of face#sEq. (4.5) and consider
partition of this number intas, ns, ng, etc. In any case, this means that the Young tableaux
can be associated with such partition and, in view of the resulsgofion 3 again, the vi-
cious walkers can be linked with such Young/Ferrers tables. The question remains: how to
connect the vicious walkers with ribbon polygons explicitly? To this purpose rieeatlark
2.1and discussion which follows. According to this remark and the following discussion
both correlation functions,, and 7,, are defined in fact for vicious walks made out of
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loops. Topologically, our polygons are also loops. Hence, it makes sense to identify the
loops entering into expressions 8, andT, with those coming from polygons associated
with ribbon graphs. This identification requires some care (that is it requires some proofs)
and, hence, cannot be made straightforwardly as we would like to demonstrate now.

If we associate (replace) the polygonal paths by the paths of vicious walkers then, except
at vertices, only “binary interactions” between these walkers need to be considered. These
“binary interactions” are of geometrical origin since they are effectively equivalent to con-
sidering just one vicious walker in the presence of an absorbing[82jll According to
Fisher[52], this means that “no walk can penetrate the wall and any walk attempting to do
so is eliminated”. In addition to the geometrical constraint on such walk, the present case
differs from that discussed by Fisher because one has to demonstrate that the walk which
survived encounter with one wall entirely forgets about this encounter when it is facing
the next wall. Fortunately, this is the case. Indeed, the non-normalized distribution function
0. (x; o) for the walk starting at = a and aftem steps reaching the pointis obtained
by Fisher, e.g. see Eq. (5.5) [&2], and is given by

e " axexp(—x?/2n)
Ji2 a2

where apart from the facterexp(—on), one can easily recognize the probability of the
first passage through at “time” n for the random walk which had started at the origin:
x = 0[75]. This probability has yet another interpretation more suitable for the problem
we are discussing. Indeed, following Fel[@b, Chapter 3]the same expression describes
probability for two-dimensionaldirected random walkers which had begun their walk at
the origin and aften steps had ended at some point 0, y > 0 of x, y-plane, provided
that these walkers never cross thaxis. Evidently, one may associateaxis with “time”
(in our casen) direction whiley-axis with “space” direction in order to get vicious walk
interpretation of such random walk. In any event, it should be clear that in space direction
(that is perpendicular to the wall) such walk is acting as random and, hence, it “forgets” its
past. This observation provides justification for representation of the “circular” vicious walk
by a sequence dhdependentandom vicious walkers-enefor eachedge of the closed
polygon.

Next, we have to find an analogue of the partition functiem,(3.8) This is accomplished
in several steps. First, we notice tlaf. (3.8)does not contain information about the number
of steps in the walk, only about the number of walks. Ugiag. (3.8) and (4.6ye introduce
for each edgehe following generating function (known as perimeter meaf26e37)

On(x;0)~

(4.6)

Cler &) = fo dr P (&1, £2: %), .7)
where
P(r, £2: x) = /O dns /O 20y (x; £1) Oy (x: £2), 4.8)

and we putz = 1in Q,(x; &) in Eq. (4.6) This is permissible since the factor éxpn)
can be always amended to absar{e.g. read Fisher’'s papgs2]). UsingEgs. (4.6)—(4.8)
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the explicit form of the perimeter measure can be easily obtained using standard tables of
the Laplace transform. The final result is given by

2
V21428

This result should be applied to all edges of the ribbon graph and the final result should take
into account all automorphismaut I"| of the underlying “normal” trivalent graphs. Taking
into account the assembly factor of 2" the final result can be written as follows:

2—V(F)25(r)
LZG)EL o ) = Y

1
Gelyn AUG)L ey Vi TV

with indicesi and referring toith andjth polygons sharing the same edge.

Since the LHS is given b¥gs. (3.20) and (4.1Q)oincides with Kontsevich identity,
Eq. (1.35) provided that identificatiorh; = +/2; is made. Since for trivalent graphs
V| = 2/3|&|, we obtain

2—V(1‘)2€(r) — 22g—2+n (411)

C1,862) = (4.9)

(4.10)

in accord with[87].

5. Piecewise linear homeomor phisms of the circleand KdV

In this section we would like to provide another interpretation to the results obtained in
previous sections. This interpretation is desirable since its aim is to explain to what extent
W-K modelis universal from the point of view of dynamical systems theory. This is also de-
sirable for the purpose of connecting results of this paper with Witten—Dijkgraaf—\Verlinde—
Verlinde (WDVV) equations and Frobenius manifolfs7,95] To begin, we need to
introduce some information about the Thompson groups.

5.1. Some facts about the Thompson groups

The groupsF, T andV were introduced by Richard Thompson in 1965. Unfortunately,
his results had not been published. This, nevertheless, had not stopped line of research
initiated by Thompson as can be seen from the pedagogically written review article by
Cannon et al[96]. Below, we provide some basic facts on Thompson groups using mainly
this reference. Additional sources will be used whenever they are needed to suit our needs.
Let F be the set of piecewise linear homeomorphisms from the closed unit interval
[0, 1] to itself that are differentiable except at finitely many points. [fet F and let
0=xp < x1--- < x, = 1 be the set of points at whicfi is not differentiable. This
partition determines intervals,[ 1, x;] for i = 1, ..., n which are called intervals of the
partition. A partition of [Q 1] is calledstandard dyadigartition if and only if the intervals
of partition are standard dyadic intervals.

Definition 5.1. A standard dyadic interval in [@] is an interval of the formd/2", a +
1/2"], wherea andn are non-negative integers with< 2" — 1.
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[01]

[0,12] [121]

29

[0,1/4]  [1/4,172] [1/2,3/4 [3/4,1]

ANARVAWA

Fig. 15. The tree of standard dyadic intervals.

Itis useful to associate a finite ordered rooted binary tree associated with standard dyadic
intervals as depicted iRig. 15 Forx;_1 < x < x;,i = 1,...,n, the functionf can be
written as follows:

f(x) =aix + b; (5.1)
with a; being a power of 2 ané; being a dyadic rational number. It can be shown that
f~1 e F and f maps the set of dyadic rational numbers bijectively to itself. HeRcis,
closed under the composition of functions and therefore is a subgroup of the group of all
homeomorphisms from [@] to [0, 1]. This group isF group of Thompson.

Definition 5.2. When points 0 and 1 are identified to make a ci€tethen, the resulting
Thompson group is called group. Another Thompson group acting on the circl&/is
group. Its definition is a bit technic6] but, at “physical level” of rigor, the difference
betweenV andT groups is hardly noticeable. Therefore, followifgy] we shall denote
bothV andT groups aL,(S1) and we shall keep in mind that both groups are subgroups
of the groupHomeaq. of piecewise orientation-preserving homeomorphisms of the circle.
The following proposition proven if96] is very important.

Proposition 5.3. Let f € F. Then there exists a standard dyadic partitide- xo < x1 <
- < x, = 1such that f is linear on every interval of the partition ad= f(xg) <
f(x1) <--- < f(x,) = 1is a standard dyadic partition

Evidently, using the proof of this proposition, the same statements can be made for
Thompson groupg andV.

Remark 5.4. Using results of42], the tree depicted ifrig. 15can be put in bijective
correspondence with the set of nonintersecting arcs depickgg.i In view of Proposition

5.3, different arc configurations correspond to different piecewise linear homeomorphisms
of the circle caused bRLo(S1). This statement is going to be examined further below in
Section 5.3

Remark 5.5. In view of Eq. (5.1)it can be showrj98] that, except for points & xg <
X1 < --- < x, = 1, the groupPLa(S1) is isomorphic to grouSL»(Z) which had been
discussed at length in our previous wo4k.
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-1

-1/2

o0

1/2
1

Fig. 16. The standard dyadic tessellation of the Poindisc with oriented marked edge being displayed.

5.2. Some facts about the Ptolemy group

In addition to isomorphism mentioned Remark 5.5there is yet another important
isomorphism between the Thompson and the Ptolemy groups which we would like to
describe briefly in this subsection. Following Lochack and Schgsjslefine the standard
marked tessellation of the Poincaré disc as dyadic tessellation with marked (oriented) edge
from 0 tooo as depicted ifFig. 16

The elementary mowve on the oriented edge of the dyadic tessellation changes its loca-
tion from one diagonal of the unique quadrilateral containing it to another one by turning it
counterclockwise as depictedfig. 17. Such elementary move is of order 4 evidently. In

Fig. 17. The elementary move on the oriented edge.
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Fig. 18. An arrow-moving move.

addition to this move there is an arrow-moving mgvdepicted inFig. 18 This operation
moves an oriented edge to another edge without changing the tessellation itself. The min-
imal order of this operation is 3. This fact makes it formally similar to that coming from
Sarkovskii theorem, e.g. s&emark 3.3which forbids periodic orbits of period lesser than

3. Generatore andg along with relations

at =1, =1, @B’ =1, (5.2)
and commutator relations
[BoB. a?Bapa®l =1, [Bap,a’pa’Bape’p®a®] =1 (5.3)

define the Ptolemy grou99]. Imbert had demonstrat¢@l7] that this group is isomorphic
to PLo(SY). The same result is obtained[®0] with the help of slightly different methods.

5.3. Circular homeomorphisms, combinatorics of the ribbon graphs and volumes of
hyperbolic polyhedra

Now we would like to add some important detailfkemarks 5.4 and 5rdade above. In
view of Remark 5.8he standard dyadic tessellation of the Poincaré disc depictéd.in6
can be showif97,98]to be in one-to-one correspondence with the Farey tessellation of the
unit discD discussed in detail if4]. Such tessellation can be obtained from two “seeds”,
that is from two triangles with vertices located a£01/0, 1= 1/1,00 = 1/0 and 0,—1
and oo respectively (e.g. see Fig. 16 and Section 249 The duals to the tessellations
originating from these seeds are rooted binary trees whose roots are connected to each other
as depicted in Fig. 9 d#]. The Farey tessellation is also knownidsal triangulationof
D [98]. Ideal since the triangle which cover the hyperbolic plane/disc are ideal in the same
sense as Euclidean equilateral triangles covering the entire plane without gaps form an ideal
triangulation of the Euclidean plane. Since the Farey tessellation is multilevelelli(e 16
depicts just two levels while Section 2@ describes how to construct tessellations of any
level). If the level is finite (or at least periodic as depicted in Fig. $49¥, then the duals
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of these tessellations are two rooted binary trees that are also finite. With the tiéfj of
they can be put in bijective correspondence witlo systems of arcs, e.g. those depicted

in Figs. 3 and 10etc. needed for construction of the finite ribbon graph as discussed in
Section 4 Surely, the infinite level case of Farey tessellation is obtained as limiting case of
finite level case. The moves depictedHigs. 17 and 1&re in fact homeomorphisms of the
circle[98,100]belonging to the subgrougomea_. They affect the pattern of triangulation

of the unit disc and, hence, affect the binary trees. As demonstra{é@]irnthe group of
automorphisms of the reduced binary trees (meaning of the maoltecedis explained in
Section 2 of[96]) coincides with Thompson groupLy(SY). In the same reference the
analogue of moves andg for trees is obtained. Some additional physics can be associated
now with these mathematical facts. To this purpose, followit@l] we notice that the
automorphisms of two binary trees associated with two arc systems are independent. Each of
these trees is in bijective correspondence with some triangulation of the convex polygon by
noncrossing diagonalé42]. Every automorphism of individual tree causes some change in
the triangulation pattern for given polygon. Since these changes are independent, following
Sleator et al[102] one may ask about the minimal number of automorphic steps needed
to bring one triangulation pattern in exact correspondence with another. This problem is
of major importance in computer science. To make it also of importance to physics (and
also to evolutionary genetidd 03], dynamics and thermodynamics of folding of RNA
[82,104] etc.) following[102] several more steps are required. First, by gluing these two
polygons to each other we form a triangulated spi#teSecond, we project this sphere
stereographically into the complex plane so that pattern of triangulatio$&istransferred

to the Euclidean plane. Next, we associate this plane with boundary of the upper half space
model forH3. The triangular pattern on such plane is sufficient for reconstruction of the
hyperbolic polyhedra according to Thursfd®]. A pedagogical account of how it can be
actually done can be found jh05]. Finally, if needed, such polyhedra can be mapped into
the hyperbolic ball model dfi® so that the vertices of these hyperbolic polyhedra are located
atthe sphere at infinitygo. Each triangulation pattern on the sphﬁfgthus associated with
some hyperbolic polyhedron of finite volunig which is determined by this triangulation
pattern. The physics can be now injected into this picture by introducing some Boltzmann
factor exg— g Vi) so that different volumes are related to different triangulations. The larger
the volume is for a given “temperatur@’, the more stable triangulation pattern becomes.
Incidentally, referencfl02]is devoted to finding hyperbolic polyhedra with large volumes.

Remark 5.6. Very recently statistical mechanics of various physical systems with Boltz-
mann factor containing volume (including hyperbolic volume) had been considered by
Atiyah and Sutcliffe[106]. Actually, these authors had considered instead of volume its
logarithm.

5.4. Universal Teichmuller space, KdV and Frobenius manifolds

Connections between the Dyck paths, Virasoro characters and exactly solvable lattice
models had been known for some tifi®7]. Moreover, since combinatorics of the Dyck
paths is directly associated with that for the Catalan numbers, such connections are actually
not totally unexpected since there are about 150 interpretations of the Catalan numbers
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[42]. This, by the way, means that potentially there are much more applications of the W—K
model than we had mentioned so far. It is not the purpose of this subsection to provide
the list of such applications. Instead, we are interested in intrinsic features of W—K model
which are encoded by the Thompson (or the Ptolemy) group. Following PEI8)200]
theuniversal Teichmuller spackssis defined by

Homeo.
Mob
whereMéb is justPSL(2, R). If Tess is a set of all tessellations Bf, thenTess= Tess/Mob

as well, as Penner shows. In Section T3}fwe had introduced and discussed the universal
Teichmuller spacé (1) as defined by Bers. More explicitly, such space is defined by

Qs
T(1) = ﬁ(z, R) (5.5)
with QSbeing a set of all quasisymmetric deformations of the cisde(or real lineR).
We shall discuss these deformations in some detail below. In the meantime we naotice that
“physical” definition of the Teichmller spaceis given by
Diff ;.
~ PSL2, R)’

723'55:

, (5.4)

(5.6)

whereG = Diff, denote set of all orientation preserving diffeomorphism§§f Since
G is proper subgroup dPS[98], it is clear thatT' is embedded int@ (1). In [98] Penner
argues tha@Sis subset oHomea . This leads to the following inclusions:

T CTQ) C Tess (5.7

This result is very nontrivial since it makes sense out of Sarkovskii thedremérk 3.3
and Section 5.2 in the present context. It also allows to use Nag and Verjoj3ky3]
arguments (summarized in Section 7[8) for use ofQSdeformations oﬁgo in order to
obtain the Virasoro algebra. It is well documented fact that the method of coadjoint orbits
[109] directly connects the Virasoro algebra with KdV equation. The connection between
QSdeformations and KdV can be established directly without method of coadjoint orbits.
For this purpose we need to use some classical results of Affs}s

Letw = f(z) be a homeomorphism of the compleyplane (ors?). Then

dw = f,dz + f; dz. (5.8)
The complex dilatation factqr giving rise to the Beltrami equation is defined now as
=tz (5.9)

and the associated modulus of this dilatation factor is defineddy= |u| < 1. The
mapping is considered to bé-quasiconformailf there is a non-negative constakitsuch
thatD; < K, whereD; = (14 dy)/(1 — dy). Accordingly, the mapping is conformal
if Dy = 1. Suppose now thaf maps the upper Poincaré half plane to itself (which is,
of course, equivalent to the mapping Dfto itself). The mapping is quasisymmetric, i.e.
f € QSif for all points x, x — ¢ andx + ¢ on real lineR the following M condition

L feED - f0)
S f@—fe—n "

M (5.10)
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is satisfied withM being some non-negative constant. In Chapter [5f Ahlfors proves
that the function which ischlichtand has a quasiconformal extension to the upper half
plane must obey the following Fuchsian-type equation known already to Pojdd#ié

Y+ 3¢y =0. (5.11)

The mapping functiorf = y1/y2, wherey; andy, are being two independent solutions of
Eqg. (5.11)normalized by

yiy2 —yoy1 =1 (5.12)

The functiony is determined by equatiorf| = ¢ with [ f] being the Schwarzian derivative
of f. Recall[111] that the function is considered to be schlicht (or simple) at some point
of complex plane if its first derivative is nonzero at this point.

Lazutkin and Pankratovid 12] studiedEqg. (5.11)from the point of view of the circle
maps. They used a variantgf|. (5.1)given by

FE+2r)=F@¢)+21,8 R (5.13)
to study the transformational propertiestsj. (5.11) In particular, change of variables

x=F@E and y(FE=YEVFE) (5.14)
leavesEqg. (5.11)in the same fornY” 4+ 1/2@Y = 0 with potential® given by

DE) = p(FENF 1 + [F©)] (5.15)

with [F (§)], again, being the Schwarzian derivative Bf Eq. (5.15)actually determines
transformational properties of the Schwarzian derivative. In Ahlfors notaf@®isthis
equation can be equivalently rewritten as equation for transformation of the Schwarzian
derivative:

[f o Fl=(f]o FI)(F)?+[F]. (5.16)

Evidently, this equation holds irrespective to the explicit formegf. (5.13) Using this
observation it is of interest to consider transformation of the %@ = & + ¢ (&) with

8 being small parameter and&) some function which makesg. (5.13)to hold. Use of
this type of function irEq. (5.16)produces

(& +8p(£) = (&) + 8(To) () + O8?) (5.17)
with
(Te)E) =)' (E) + 30" &) + ¢ (E)g(®). (5.18)

The KdV equation can be obtained now in a simple minded way. To this purposegsince
is arbitrary, we choose = ¢. Next, we make botlp and¢ to depend upon the parameter
3, that is we writep = ¢ (&, §). Next, we assume that the paramétgtays role of “time”

t and, finally, we write

D —
lim ¢ = 8_¢
t—-0 t ot

(5.19)
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This then produces our final result:

a9

ar
Eq. (5.20)coincides with Eq. (2.2) of Segfl13] and, hence, can be called KdV equation.
We provided details of derivation in order to emphasize the universality of this equation in
problems which involve circular maps or map$ofSince KdV is effectively dual to the Vi-
rasoro algebra surely it also can be obtained via Nag—Verjovsky approach to construction of
the Virasoro algebra and the Kirillov—Kostant two-form by using the universal Teichmuller
spaceT (1) [108]. Summary of Nag—Verjovsky results can be found in our earlier work
[3]. These results were extended by Perja@f whose Theorem 5.5 essentially assures the
existence of the Kirillov—Kostant two form which is invariant under transformation taken
from the Ptolemy group. Independent and deep studies of the same problem can be found
also in earlier work by Ghys and Sergiegt4]. Higher order KdV can be easily obtained
by sequential use df operator as can be seen fr¢ii5].

Eqg. (5.11)contains actually much more information than we had discussed thus far as
was shown by Dubrovin, e.g. see Example C.19&f. From this example (and preceding
discussion) it follows that variety of equations of WDVV type are obtainable as special
cases oEq. (5.11) Moreover, the self-dual Yang—Mills and Einstein equations also follow
from Eq. (5.11) [95,116]Geometrically, solutions of WDVV equations represErabe-
nius manifoldsThy are named after Frobenius who was the first to discover them in 1882
[117]. Incidentally, the self-dual Einstein equations had been studied already in 1881 by
Halphen118]and rediscovered by Atiyah and HitcHiil6]. In recent paper by van de Leur
and Martini[119] KP representation theory and the related Sato infinite Grassmannian are
used to construct solutions of the WDVV equations and, hence, the Frobenius manifolds. In
addition, Dubrovin and Zhand.20] had recently demonstrated that, at least for Frobenius
manifolds of genus zero and one the Virasoro constraints hold true. Thatis WDVV equations
can be reduced to that of KdV type. This result is in complete accord with arguments pro-
vided earlier in this section supporting the claim about universality of KdV type equations.
This universality has its origin in the properties of the universal Teichmiller and moduli
space. This universality has been studied group-theoretically by Lochack and S[98jeps
who studied action of the Grothendieck—Teichmiller groiji) on Ptolemy-Teichmdller
groupoid. Recent lecture notes by Bakalov and Kiril[d@21] contain some additional
helpful information. The authors also discuss connections between the Catalan numbers,
modular functor, modular tensor category, Teichmiuller tower, Knizhnick—Zamolodchikov
equations, etc. and contain many references on latest important related works. The latest
paper by Nakamura and Schndp22] should, perhaps, be added to the list references. It
is our hope that mentioning of all these beautiful mathematical results in this paper may
encourage some applications of these results in areas other than mathematics and theoretical
particle physics.

Note added in proofWhile this paper was under refereeing, several important recent
publications came to our attention. In particular, referdd@3] provides a very efficient
introduction into Schubert polynomials, Shubert varieties and related topics. References
[124,125]written and edited by Rota provide an indispensable supplement to book by Stan-
ley [42]. These references allow us to keep things in historical perspective and, hopefully,

1
3p¢’ + 54)”4 (5.20)
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should serve as an inspiration for many additional potential applications. In recent paper
by Sézen and Bonahdn26] it is shown that the Weil-Petersson symplectic favg-p,

e.g. seeEq. (1.4) coincides with Thurston intersection formfor geodesic laminations
(more details on this subject can be found from yet unpublished book by Francis Bona-
hon “Closed Curves on Surfaces” available on-line). This allows to establish connections
between foliations/laminations and noncommutative geometry as actually had been demon-
strated by Connefd27] some time ago. In addition to monogra@7] by Manin, recently

Manin and Zograf had obtained explicit asymptotics for Weil-Petersson volumes of the
moduli spaces of punctured Riemann surfaces in the limit of fixed genus and number of
punctures grooving to infinity128] while Grushevsky have obtained the asymptotics for
the fixed number of punctures with genus grooving to infifilt#9]. In [130] Guha made

some progress in showing new connections between the diffeomorphisms of the circle and
the exactly integrable systems of the KdV type by connecting them with differential Galois
theory. Finally, direct links between the results of ftirand those discussed in this paper
could be also developed with the help of random polynoniiie34,132]
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